Math, asked by nhnubah74, 1 month ago

The area of an equilateral triangle is 9√3 square units. Find the perimeter of the

triangle:

a. 6 b. 36 c. 18 d. 18√3​

Answers

Answered by ritikanishad033
4

Answer:

18

Step-by-step explanation:

√3b² = 36√3 cm² : divide both sides by √3 to isolate b²

b² = 36 cm² : take the square root of both sides to isolate b

b = 6 cm : simplify the radical

So each side is 6 cm

The perimeter is the sum of all three sides: 6 cm + 6 cm + 6 cm = 18 cm.

Answered by Anonymous
15

\huge\sf{\underline{\underline{\bold{\sf{Given\::}}}}}

  • \sf{Area\:of\:an\:Equilateral\:Triangle\:=\:9\:\sqrt{3}}

{ }

\huge\sf{\underline{\underline{\bold{\sf{Find\::}}}}}

  • \sf{Perimeter\:of\:the\:Triangle}

{ }

\huge\sf{\underline{\underline{\bold{\sf{Solution\::}}}}}

  • \bf{Let\:the\:side\:of\:an\:equilateral\:=\:a\:cm}
  • \bf{Area\:of\:an\:Equilateral\:Triangle\:=\:9\:\sqrt{3}}

{ }

\:\:\:\:\:\:\:\::\:\Longrightarrow\sf\:{\frac{\sqrt{3}}{4}}\:\times\:{a}^{2}\:=\:9{\sqrt{3}}

\:\:\:\:\:\:\:\::\:\Longrightarrow\sf\:{a}^{2}\:=\:9{\sqrt{3}}\:\times\:{\frac{4}{\sqrt{3}}}

\:\:\:\:\:\:\:\::\:\Longrightarrow\sf\:{a}^{2}\:=\:9\:\times\:4

\:\:\:\:\:\:\:\::\:\Longrightarrow\sf\:{a}^{2}\:=\:36

\:\:\:\:\:\:\:\::\:\Longrightarrow\sf\:{a\:=\:{\sqrt{36}}}

\:\:\:\:\:\:\:\::\:\Longrightarrow\sf\:{a\:=\:6\:cm}

{ }

  • \small\sf{Now,\:Perimeter\:of\:the\:equilateral\:triangle\:=\:3a}

\:\:\:\:\:\:\:\::\:\Longrightarrow\sf{\:3\:\times\:6}

\:\:\:\:\:\:\:\::\:\Longrightarrow\sf{\:18\:cm}

{ }

\:\:\:\:\:\:\:\:{\purple{\bold{\dag}}}\:{\underline{\sf{So,\:the\:correct\:option\:c\:is\:{\bold{\pink{18\:cm}}}}}}.

Similar questions