Math, asked by biology7679, 1 year ago

The area of an expanding rectangle is increasing at the rate of 48 cm^2/sec. The length of the rectangle is always equal to the of the breadth. At what rate length is increasing at the instant when the breadth is 4.5cm??

Answers

Answered by Arslankincsem
5

Let the area at time t be A=A (t), and let the breadth at time t be x=x(t). Then the length at time t is x^2, and therefore


A=x^3.


Differentiate with respect to t, using the Chain Rule. We get


dA/dt = 3x^2dx/dt…………………………………………………………(1)


Now freeze the situation at the instant that x=4.5.


We know dA/dt, and we know x, so from (1) we can find dx/dt at that time.


Similar questions