The area of an isosceles ∆is 8√15 cm ^2 if the base is 8cm find the length of each of its equal sides
Answers
Answer:
2√19 cm
Step-by-step explanation:
Area of the triangle = 8√15 cm² ; base = 8cm
Area of the triangle = 1/2 * base * height
8√15 = 1/2 * 8 * height
8√15 = 4 * height
Height = 8√15 / 4
Height = 2√15 cm
In triangle ABC, AB =AC ; AD = DC = 8/2 = 4cm
Triangle ADC is a right angled triangle.
Using Pythagoras Theorem,
AC² = AD² + DC²
AC² = (2√15)² + 4²
AC² = (4 * 15) + 16
AC² = 60 + 16
AC² = 76
AC² = 4 * 19
AC = √4 * √19
AC = 2√19 cm
∴The length of equal sides is 2√19 cm
Answer:
2√19 cm
Step-by-step explanation:
Step-by-step explanation:
Area of the triangle = 8√15 cm² ; base = 8cm
Area of the triangle = 1/2 * base * height
8√15 = 1/2 * 8 * height
8√15 = 4 * height
Height = 8√15 / 4
Height = 2√15 cm
In triangle ABC, AB =AC ; AD = DC = 8/2 = 4cm
Triangle ADC is a right angled triangle.
Using Pythagoras Theorem,
AC² = AD² + DC²
AC² = (2√15)² + 4²
AC² = (4 * 15) + 16
AC² = 60 + 16
AC² = 76
AC² = 4 * 19
AC = √4 * √19
AC = 2√19 cm
∴The length of equal sides is 2√19 cm
Subscribe to BoRn To Blast YT