The area of an isosceles triangle having base 3 cm and length of one of the equal sides is 2 cm, is (a) 1.98 cm² (c) 2.5 cm² (b) 3.7 cm² (d) 4.8 cm²
Answers
Answer:
s=
s= 2
s= 24+4+2
s= 24+4+2
s= 24+4+2 =5
s= 24+4+2 =5Area of the triangle
s= 24+4+2 =5Area of the triangleΔ=
s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c)
s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c)
s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c)
s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) =
s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) = 5(5−4)(5−4)(5−2)
s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) = 5(5−4)(5−4)(5−2)
s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) = 5(5−4)(5−4)(5−2) =
s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) = 5(5−4)(5−4)(5−2) = 15
s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) = 5(5−4)(5−4)(5−2) = 15
s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) = 5(5−4)(5−4)(5−2) = 15 cm
s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) = 5(5−4)(5−4)(5−2) = 15 cm 2
Step-by-step explanation:
You can refer to this..