Math, asked by kumarijanvi852, 1 month ago

The area of an isosceles triangle having base 3 cm and length of one of the equal sides is 2 cm, is (a) 1.98 cm² (c) 2.5 cm² (b) 3.7 cm² (d) 4.8 cm²​

Answers

Answered by Zahrah2008
1

Answer:

s=

s= 2

s= 24+4+2

s= 24+4+2

s= 24+4+2 =5

s= 24+4+2 =5Area of the triangle

s= 24+4+2 =5Area of the triangleΔ=

s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c)

s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c)

s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c)

s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) =

s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) = 5(5−4)(5−4)(5−2)

s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) = 5(5−4)(5−4)(5−2)

s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) = 5(5−4)(5−4)(5−2) =

s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) = 5(5−4)(5−4)(5−2) = 15

s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) = 5(5−4)(5−4)(5−2) = 15

s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) = 5(5−4)(5−4)(5−2) = 15 cm

s= 24+4+2 =5Area of the triangleΔ= s(s−a)(s−b)(s−c) = 5(5−4)(5−4)(5−2) = 15 cm 2

Step-by-step explanation:

You can refer to this..

Similar questions