Math, asked by mitabarik59, 1 month ago

The area of an isosceles triangle having the base 24cm and length of one of the equal sides 20cm is using herons formula​

Answers

Answered by 12thpáìn
24

Given

  • Base (BC) = 24cm
  • Equal Side's (AB) = (AC) = 20cm

To Find

  • Area of Triangle

We know,

 \bf \footnotesize{Semi- Perimeter =  \dfrac{ Sum  \: of  \: all  \: Sides}{2}}

 { \implies\footnotesize \sf{Semi- Perimeter =  \dfrac{ 24 + 20 + 20}{2}}}

 { \implies\footnotesize \sf{Semi- Perimeter =   \cancel\dfrac{64}{2}}}

 { \implies\footnotesize \sf{Semi- Perimeter =  32}}

 \sf {Now  \: by \:   \bf  \pink{Herons  \: Formula}}

{  \sf\: Area \:  of \:  ∆ = \sqrt{s(s-a)(s-b)(s-c)}}

{  \sf\: Area \:  of \:  ∆ = \sqrt{32(32-24)(32-20)(32-20)}}

{  \sf\: Area \:  of \:  ∆ = \sqrt{32 \times 8 \times 12 \times 12}}

{  \sf\: Area \:  of \:  ∆ = \sqrt{256 \times  {12}^{2} }}

{  \sf\: Area \:  of \:  ∆ = \sqrt{ {16}^{2} \times  {12}^{2} }}

{  \sf\: Area \:  of \:  ∆ = 16 \times 12 }

{  \sf\: Area \:  of \:  ∆ = 192 } \\

  • Hance the area of Triangle be 192 cm².

Attachments:
Answered by jasleena3330
4

and the

32 - 2× 2 ×2 × 2 ×2

8 = 2 × 2 × 2

12 = 2 ×3 × 2

12 = same as Frist

Attachments:
Similar questions