The area of an isosceles triangle is 60 cm² and the length of each one of its equal sides is 13 cm. Find its base.
Answers
Answered by
43
Given:
Area of the isosceles triangle (ABC) = 60 cm²
Length of the each equal side (AB=AC) = 13cm.
Draw AD perpendicular from A on BC.
Let BC = 2x cm .
Then BD = DC= x cm.
In ∆ABD
AB² = AD² + BD² [by Pythagoras theorem]
13² = AD² + x²
169 = AD² + x²
AD² = 169 - x²
AD = √ 169 - x²
Area of ∆ ABC = ½ base × height
60 = ½ × BC × AD
60 = ½ ( 2x × √ 169 - x²
60 = x ×√ 169 - x²
On squaring both sides
60² = (x √ 169 - x²)²
3600 = x²(169 - x²)
3600 = 169x² - x⁴
x⁴ - 169x² +3600= 0
x⁴ -144 x² -25x² +3600= 0
x²(x² -144) -25(x² -144)= 0
(x² -25) (x² -144)= 0
(x² -25) = 0 or (x² -144)= 0
x² = 25 or x² = 144
x = √25 or x = √144
x = 5 or x = 12
When x= 12, then base = 2x = 2×12= 24 cm or
When base = 5 , then base = 2x = 2× 5 = 10 cm.
Hence, the base is 24 cm or 10 cm.
HOPE THIS WILL HELP YOU....
Area of the isosceles triangle (ABC) = 60 cm²
Length of the each equal side (AB=AC) = 13cm.
Draw AD perpendicular from A on BC.
Let BC = 2x cm .
Then BD = DC= x cm.
In ∆ABD
AB² = AD² + BD² [by Pythagoras theorem]
13² = AD² + x²
169 = AD² + x²
AD² = 169 - x²
AD = √ 169 - x²
Area of ∆ ABC = ½ base × height
60 = ½ × BC × AD
60 = ½ ( 2x × √ 169 - x²
60 = x ×√ 169 - x²
On squaring both sides
60² = (x √ 169 - x²)²
3600 = x²(169 - x²)
3600 = 169x² - x⁴
x⁴ - 169x² +3600= 0
x⁴ -144 x² -25x² +3600= 0
x²(x² -144) -25(x² -144)= 0
(x² -25) (x² -144)= 0
(x² -25) = 0 or (x² -144)= 0
x² = 25 or x² = 144
x = √25 or x = √144
x = 5 or x = 12
When x= 12, then base = 2x = 2×12= 24 cm or
When base = 5 , then base = 2x = 2× 5 = 10 cm.
Hence, the base is 24 cm or 10 cm.
HOPE THIS WILL HELP YOU....
Attachments:
Answered by
8
Nice Questions! ♥
Let's unlock the answers now…
=============================================
Let base x and altitude p
Area=1/2(x*p)=60
p=120/x
Now applying pythagoras theorem
(x/2)^2+(120/x)^2=13^2
solve
x=24, x=10
==============================================
Hope my answer helped … ☺
Similar questions
English,
8 months ago
Math,
8 months ago
English,
8 months ago
English,
1 year ago
Computer Science,
1 year ago