Math, asked by sandhyakumari23780, 1 month ago

the area of ∆AOB having vertices A(0,0) O(1,0) B(0,1).

Answers

Answered by telex
603

Question :-

the area of ∆AOB having vertices A(0,0) O(1,0) B(0,1).

__________________

Solution :-

Given Information :-

  • Vertices of a Right Angled Triangle ∆AOB
  • A ➢ ( 0,0 )
  • ⇒ A ➢ ( X ₁,Y ₁ )
  • O ➢ ( 1,0 )
  • ⇒ O ➢ ( X ₂,Y ₂ )
  • B ➢ ( 0,1 )
  • ⇒ B ➢ ( X ₃,Y ₃ )

To Find :-

  • The area of Right Angled Triangle ∆SOB

Concept :-

  • Area And Perimeter of Plane Figures / Graphical Representation of Plane Figures

Formula Used :-

  • Area =  \boxed{ \boxed{ \sf \dfrac{1}{2}  [x_1(y_2 - y_3) + x_2(y_3 - y_1)  + x_3(y_1 - y_2) ]}}

Explanation :-

  • Simply substituting the values in the formula above, We will get our answer, i.e., area of ∆AOB

Diagram :-

  • Attached in the image above.

Calculation :-

Substituting the values in the formula stated above, We get,

 \sf:  \implies  \sf \dfrac{1}{2}  [x_1(y_2 - y_3) + x_2(y_3 - y_1)  + x_3(y_1 - y_2) ]

After substitution of values, We get,

 \sf:  \implies  \sf \dfrac{1}{2}  [0(0 - 1) + 1(1 - 0)  + 0(0 - 0) ]

Calculating further, We get,

 \sf:  \implies   \sf \dfrac{1}{2}  [0 + 1 +0 ]

Calculating further, We get,

 \sf:  \implies   \sf \dfrac{1}{2}  [1] =  \dfrac{1}{2}

Cancelling & Calculating further, We get,

 \sf:  \implies \red  {\dfrac{1}{2} }

 \sf \therefore   \bf area \: of \:  \triangle =    \boxed{\red{\dfrac{1}{2}  \: units^{2} }}

___________________

Final Answer :-

  • Area of ∆AOB = \dfrac{1}{2}  \: units^{2}

____________________

Attachments:
Similar questions