Math, asked by singhabhay33491, 4 months ago

the area of base of a right circular cylender is 412 cm*and height is 12cm What is its volume?​

Answers

Answered by TheBrainliestUser
20

Answer:

  • Volume of a cylinder is 1704 cm³.

Step-by-step explanation:

Given that:

  • The area of base of a right circular cylinder is 412 cm².
  • Height of a cylinder is 12 cm.

To Find:

  • What is its volume?

Formula used:

  • Volume of a cylinder = Area of base × Height

Finding the volume of cylinder:

  • Volume = (142 cm² × 12 cm)
  • Volume = 1704 cm³

More formula of right circular cylinder:

  1. Total surface area = 2πr(r + h)
  2. Curved surface area = 2πrh
  3. Area of base = πr²

Here,

  • r = Radius of base of a cylinder
  • h = Height of a cylinder
Answered by Anonymous
207

Answer:

  \Large \underline \red{\sf \pmb{Given}}

  • ➠ The area of base of a right circular cylender is 412 cm²
  • ➠ Height of cylinder is 12cm.

\rule{200}2

  \Large\underline \red{\sf \pmb{To \: Find}}

  • ➠ Volume of cylinder

\rule{200}2

 \Large \underline \red{\sf \pmb{Using \: Formula }}

 {\underline {\boxed{ \sf{Volume \:  of \:  cylinder =Area \: of \:  Base × Height }}}}

\rule{200}2

 \Large \underline \red{\sf \pmb{Solution}}

{\implies\sf{Volume \:  of \:  cylinder =Area \: of \:  Base × Height }}

{\implies\sf{Volume \:  of \:  cylinder =142  \: {cm}^{2} × 12 \:cm }}

{\implies\sf{Volume \:  of \:  cylinder =1704  \: {cm}^{3}  }}

\Large\underline \red{\sf \pmb{Therefore}}

  • The Volume of cylinder is 1704 cm³

\rule{200}2

 \Large  \underline \red{\sf \pmb{Additional \: Information }}

\begin{gathered}\begin{gathered}\bigstar \: \bf\underline{More \: Useful \: Formulae } \: \bigstar  \\ \begin{gathered}{\boxed{\begin{array} {cccc}{\sf{{\leadsto TSA \: of \: cube \: = \: 6(side)^{2}}}} \\  \\{\sf{{\leadsto LSA \: of \: cube \:= \: 4(side)^{2}}}}  \\  \\{\sf{{\leadsto Volume \: of \: cube \: = \: (side)^{3}}}} \\  \\ {\sf{{\leadsto Diagonal \: of \: cube \: = \: \sqrt(l^{2} + b^{2} + h^{2}}}} \\  \\ {\sf{{\leadsto Perimeter \: of \: cube \: = \: 4(l+b+h)}}} \\   \\ {\sf{{\leadsto CSA \: of \: sphere \: = \: 2 \pi r^{2}}}} \\  \\ {\sf{{\leadsto SA \: of \: sphere \: = \: 4 \pi r^{2}}}} \\  \\{\sf{{\leadsto TSA \: of \: sphere \: = \: 3 \pi r^{2}}}} \\  \\ {\sf{{\leadsto Diameter \: of \: circle \: = \: 2r}}} \\  \\ {\sf{{\leadsto Radius \: of \: circle \: = \: \dfrac{d}{2}}}} \\  \\ {\sf{{\leadsto Volume \: of \: sphere \: = \: \dfrac{4}{3} \pi r^{3}}}} \\  \\ {\sf{{\leadsto Area \: of \: rectangle \: = \: Length \times Breadth}}} \\  \\ {\sf{{\leadsto Perimeter \: of \: rectangle \: = \:2(length+breadth)}}} \\  \\{\sf{{\leadsto Perimeter \: of \: square \: = \: 4 \times sides}}}\end{array}}}\end{gathered}\end{gathered}\end{gathered}

Similar questions