Math, asked by aggarwalmadhav309, 5 months ago

the area of curved surface of a cone is 60πcm2.if the slant height of the cone is 8cm,find the diameter of the base.​

Answers

Answered by SarcasticL0ve
37

Given:

⠀⠀⠀⠀⠀⠀⠀

  • Curved surface area of cone = 60π cm²
  • Slant height of cone = 8 cm

⠀⠀⠀⠀⠀⠀⠀

To find:

⠀⠀⠀⠀⠀⠀⠀

  • Diameter of base of cone?

⠀⠀⠀⠀⠀⠀⠀

Solution:

⠀⠀⠀⠀⠀⠀⠀

☯ Let radius of cone be r cm.

⠀⠀⠀⠀⠀⠀⠀

\setlength{\unitlength}{1.5mm}\begin{picture}(5,5)\thicklines\put(0,0){\qbezier(1,0)(12,3)(24,0)\qbezier(1,0)(-2,-1)(1,-2)\qbezier(24,0)(27,-1)(24,-2)\qbezier(1,-2)(12,-5)(24,-2)}\put(-0.5,-1){\line(1,2){13}}\put(25.5,-1){\line(-1,2){13}}\multiput(12.5,-1)(2,0){7}{\line(1,0){1}}\multiput(12.5,-1)(0,4){7}{\line(0,1){2}}\put(18,1.6){\sf{r}}\put(22,10){\sf{8 cm}}\end{picture}

⠀⠀⠀⠀⠀⠀⠀

We know that,

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{CSA_{\;(cone)} = \pi rl}}}}\\ \\

:\implies\sf \cancel{\pi} \times r \times 8 = 60 \cancel{\pi}\\ \\

:\implies\sf r \times 8 = 60\\ \\

:\implies\sf r = \cancel{ \dfrac{60}{8}}\\ \\

:\implies{\boxed{\sf{\pink{r = 7.5\;cm}}}}\;\bigstar\\ \\

\therefore\;{\underline{\sf{Thus,\;Radius\;of\;cone\;is\; \bf{7.5\;cm}.}}}\\ \\

We know that,

⠀⠀⠀⠀⠀⠀⠀

  • Diameter = 2 × Radius

⠀⠀⠀⠀⠀⠀⠀

Therefore,

Diameter of base of cone is 15 cm.

⠀━━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\boxed{\underline{\underline{\bigstar \: \bf\:More\:to\:know\:\bigstar}}}

⠀⠀⠀⠀⠀⠀⠀

\sf (i)\;Total\;surface\;area\;of\;cone\; = \; \red{\pi r(r + l)}

⠀⠀⠀⠀⠀⠀⠀

\sf (ii)\;Volume\;of\;cone\; = \; \purple{ \dfrac{1}{3} \pi r^2 h}


ZzyetozWolFF: Wow! So nice. ❤
Answered by Anonymous
28

\:\:\: \huge{\underline{\boxed{\sf{\red{Solution}}}}} \\ \\

Given :

  • Curved surface area of cone = 60π cm²
  • Slant height of cone = 8 cm

To Find :

  • Diameter of the base of cone

Formula used :-

\:\:\: \star \: {\boxed{\sf{Curved\:Surface\:Area\:of\:cone\:=\: \pi rl}}} \\ \\

  • Now , let us substitute the given values in the above formula :

\:\:\: \implies \: \sf 60 \pi \:=\: \pi (r)8 \\

\:\:\: \implies \: \sf 60 \pi \:=\:8 \pi (r) \\

\:\:\: \implies \: \sf r\:=\: \cancel \dfrac{60 \pi }{8 \pi } \\

\:\:\: \implies \: \sf r\:=\:7.5\:cm \\ \\

\star \: {\sf{\underline{Radius\:of\:base\:=\:7.5\:cm}}} \\ \\

  • Now , let us find diameter

\:\:\: \star \: {\boxed{\sf{Diameter\:=\:2 \times Radius}}} \\ \\

\:\:\: \implies \: \sf Diameter\:=\: 2 \times 7.5 \\

\:\:\: {\red \bigstar\: \large {\sf{\underline{\pink{Diameter\:of\:base\:=\:15\:cm}}}}} \\ \\

_________________________


ZzyetozWolFF: Wow. Juz incredible. ❤
Similar questions