Math, asked by chlowki, 9 months ago

the area of equilateral triangle is 20root3m^2 find its altitude​

Answers

Answered by Anonymous
14

» To Find :

The height of the triangle .

» Given :

  • Area of the Equilateral Triangle = 20√3 m².

» We Know :

Area of a Equilateral Triangle :

\sf{\underline{\boxed{A_{t} = \dfrac{\sqrt{3}a^{2}}{4}}}}

Height of a Equilateral Triangle :

\sf{\underline{\boxed{A_{t} = \dfrac{\sqrt{3}a}{2}}}}

Where , a is the side of the triangle.

» Concept :

To Find the height of the Equilateral triangle , first we have to find the side of the triangle.

To find the side of the triangle , we can apply the formula for area of the Equilateral Triangle .

Side of the triangle :

  • Area = 20√3 m²

Formula for Area of a Equilateral Triangle :

\sf{\underline{\boxed{A_{t} = \dfrac{\sqrt{3}a^{2}}{4}}}}

Putting the value in it ,we get :

\sf{\Rightarrow 20\sqrt{3} = \dfrac{\sqrt{3}a^{2}}{4}}

\sf{\Rightarrow 20\sqrt{3} \times 4 = \sqrt{3}a^{2}}

\sf{\Rightarrow 80\sqrt{3} = \sqrt{3}a^{2}}

\sf{\Rightarrow \dfrac{80\sqrt{3}}{\sqrt{3}} = a^{2}}

\sf{\Rightarrow \dfrac{80\cancel{\sqrt{3}}}{\sqrt{\cancel{3}}} = a^{2}}

\sf{\Rightarrow 80 = a^{2}}

\sf{\Rightarrow \sqrt{80} = a}

\sf{\Rightarrow 4\sqrt{5} m = a}

Hence , the side of the Equilateral triangle is 4√5 m.

Now ,with this information we can find the Height of the triangle.

» Solution :

Given :

  • Side of the triangle = 4√5 m

Formula :

\sf{\underline{\boxed{A_{t} = \dfrac{\sqrt{3}a}{2}}}}

By substituting the values in it ,we get :

\sf{\Rightarrow A_{t} = \dfrac{\sqrt{3} \times 4\sqrt{5}}{2}}

\sf{\Rightarrow A_{t} = \dfrac{\sqrt{3} \times \cancel{4}\sqrt{5}}{\cancel{2}}}

\sf{\Rightarrow A_{t} = \sqrt{3} \times 2\sqrt{5}}

\sf{\Rightarrow A_{t} = 2\sqrt{15} m}

Hence, the height of the triangle is 4√5 m.

» Additional information :

  • Area of a parallelogram = base × height

  • Diagonal of a Cube = √3a

  • Surface area of a Cube = 6(a)²

  • curved surface area of a Cuboid = 4(a)²

Answered by Anonymous
24

Area of equilateral triangle = 20√3 m²

 \rm Area \:  of  \: equilateral \:  triangle = \boxed{ \frac{ \sqrt{3} }{4}  \times side² }

 \frac{ \sqrt{3} }{2}  \times side  =  20\sqrt{3}

 side   =  \frac{2}{ \sqrt{3}} \times 20 \sqrt{3}  \\  side   =   20 \times 2  \\  side   =  40 \: m

 \rm Another \:  formala \:  fo r  \: area  \: of  \: triangle =  \boxed{ \frac{1}{2}  \times base \times altitude}

 \red{base = side }

20 \sqrt{3}  =  \frac{1}{2}  \times 40 \times altitude

20 \sqrt{3}  = 20 \times altitude \\  \frac{20 \sqrt{3} }{20}  = altitude \\   \sqrt{3}  \: m = altitude

Similar questions