Math, asked by mehmoodkhan2075, 1 month ago

the area of parallelogram whose altitude is 12cm is 336cm² determine the corresponding altitude​

Answers

Answered by BrainlyYuVa
5

Solution

Given :-

  • Area of parallelogram = 336 cm².
  • Altitude of parallelogram (Height) = 12 cm.

Find :-

  • Length of corresponding altitude ( Length Base).

Explantion

Let,

ABCD be , parallelogram , AE be altitude on CD .

Where,

  • AE = 12 cm

Using Formula

\boxed{\underline{\tt{\red{\:Area_{parallelogram}\:=\:(Base)\times (Height)}}}}

Or,

\boxed{\underline{\tt{\green{\:Base\:=\:\dfrac{(Area_{parallelogram})}{Height}}}}}

Keep required values,

==> Base = 336/12

==> Base = 28 cm.

Hence

  • Corresponding altitude (Base) of parallelogram will be = 28 cm.

____________________

Answer Verification

We Have,

Base = (Area of parallelogram)/(Height)

Keep values,

==> 28 = 336/12

==> 28 = 28

L.H.S. = R.H.S.

That's Proved.

_______________________

Answered by Cottonking86
26

\huge\boxed{\fcolorbox{white}{pink}{Answer:⇢}}

⠀⠀⠀

Solution :-

Given :-

  • Area of parallelogram = 336 cm².

  • Altitude of parallelogram (Height) = 12 cm.

⠀⠀⠀

To Find :-

  • Length of corresponding altitude ( Length Base).

⠀⠀⠀

Explantion :-

Let..,

  • ABCD be parallelogram ,
  • AE be altitude on CD .
  • Where, AE = 12 cm

⠀⠀⠀

Using Formula :-

\boxed{\underline{\tt{\orange{\:Area { \:  \: of \: parallelogram}\:=\:(Base)\times (Height)}}}}

⠀⠀⠀

Then.,

\boxed{\underline{\tt{\red{\:Base\:=\:\dfrac{(Area{ \: of \: parallelogram})}{Height}}}}}

⠀⠀⠀

Keep required values,

  • ⇢ Base = 336 ÷ 12

  • ⇢ Base = 28 cm.

⠀⠀⠀

Hence.,

  • Corresponding altitude (Base) of parallelogram will be = 28 cm.

__________________⠀⠀⠀

Verification :-

⠀⠀⠀

We Have.,

  • ★ Base = (Area of parallelogram) / (Height)

⠀⠀⠀

Keep values,

  • ⇢ 28 = 336/12

  • ⇢ 28 = 28

  • ⇢ L.H.S. = R.H.S.

That's Proved

_________________________

Similar questions