Math, asked by patelanjana1234, 3 months ago

the area of quadrilateral ABCD is 20cm²and perpendicular on BD from opposite vertices are 1cm and 1.5cm. The length of BD is
(please give answer with correct explanation)​

Answers

Answered by saryabairagi99
19

I HOPE it's HELPFUL for you

Attachments:
Answered by llxMrSwaGxll
56

  \: \: \:  \:  \:  \: \huge\sf \pmb{\orange {\underline \pink{\underline{\:Ꭺ ꪀ \mathfrak ꕶ᭙ꫀя \: }}}}

 \sf \pmb{Area  \: of \:  Quadrilateral  = 20}

 \sf \: Let, \:  the \:  Length  \: of  \: BD  \: (Diagonal)  \:  be \:  \red x  \: cm

 \sf \: Then,

 \star\sf  \pmb{\mathfrak {\underline \red { Area   \: (Quadrilateral \:  \sf ABCD) =  \mathfrak Area \:  ∆  (ABD) + \mathfrak Area \: ∆(ACD)}}}

\sf Area  \: of \:  Quadrilateral  = \frac{1}{2}  \times (BD) \times (AC) +\frac{1}{2} \times (BD) \times (CM)

\:  \:  \: \:   \: \sf \pink \implies  \: 20( \frac{1}{2}  \times x \times 1) \:  +  \: ( \frac{1}{2}  \times x \times 1.5)

\:  \:  \:   \: \: \sf \pink \implies\: 2.5x = 40

 \:  \:  \:  \:  \:  \sf\pink \implies \: x =  \frac{400}{25}

 \therefore  \ \: \pink  \implies\sf \pmb{\underline  {\boxed { \sf \red{x = 16 cm}}}}

 \sf \pmb  {\underline{Note}} :  Scroll \:  right \:   \: for  \: clear  \: view  \: ➾

\:  \:  \:    \:  \: \huge\sf \pmb{\orange {\underline \pink{\underline{\:♛ Ꮇ༊ ꕶฬคᎶ ♛ \: }}}}

────┈┈┈┄┄╌╌╌╌┄┄┈┈┈────

Attachments:
Similar questions