the area of quadrilateral in given figure
Attachments:
Answers
Answered by
0
Answer:
Step-by-step explanation:
In Triangle DHC
Base = 8cm
Hypotenuse = 17cm
Angle H = 90°
Perpendicular / height = ?
So, by using Pythagoras theorem
H² = P² + B²
(17)² = (P)² + (8)²
289 = P² + 64
289-64 = P²
225 = P²
√225 = P
15 = P
hence height = 15cm
Area = 1/2 ×b ×h
Area = 1/2 × 8 × 15
Area = 60cm²
____________________
In triangle ADH
Base = 12
Hypotenuse = 15
Angle A = 90°
Perpendicular / height = ?
so, by Pythagoras theorem
H² = P² + B²
(15)² = P² + (12)²
225 = P² + 144
225 - 144 = P²
81 = P²
√81 = P
9 = P
Area = 1/2×12×9
Area = 54cm²
___________________
Area of quadrilateral
Area of TriangleDHC + Area of TriangleADH
Area = 60 + 54
Area = 114cm²
___________________
Hope it will help you!
Mark Brainliest.
Step-by-step explanation:
In Triangle DHC
Base = 8cm
Hypotenuse = 17cm
Angle H = 90°
Perpendicular / height = ?
So, by using Pythagoras theorem
H² = P² + B²
(17)² = (P)² + (8)²
289 = P² + 64
289-64 = P²
225 = P²
√225 = P
15 = P
hence height = 15cm
Area = 1/2 ×b ×h
Area = 1/2 × 8 × 15
Area = 60cm²
____________________
In triangle ADH
Base = 12
Hypotenuse = 15
Angle A = 90°
Perpendicular / height = ?
so, by Pythagoras theorem
H² = P² + B²
(15)² = P² + (12)²
225 = P² + 144
225 - 144 = P²
81 = P²
√81 = P
9 = P
Area = 1/2×12×9
Area = 54cm²
___________________
Area of quadrilateral
Area of TriangleDHC + Area of TriangleADH
Area = 60 + 54
Area = 114cm²
___________________
Hope it will help you!
Mark Brainliest.
Answered by
0
Answer:
ar(ABCD)= 122 cm²
Step-by-step explanation:
Gn:
CD= 17cm, BC= 8cm, AD= 12cm &∠DBC= ∠DAB= 90°
From the Given Figure and Info, we can understand that
ΔABD & ΔBCD are right triangles.
In ΔBCD, CD is the hypotenuse.
∴CD²= BC²+ BD²
⇒289= 64+ BD²
289- 64= 225= BD²
BD= √225= 15cm
In ΔABD, BD is the hypotenuse and BD= 15cm
∴BD²= AD²+ AB²
⇒225= 144+ AB²
225- 144= AB²
AB²= 81
AB= 9cm.
ar(ABCD)= ar(ABD)+ ar(BCD)
=(1/2×12×9)+ (1/2×8×17) (As ABD & BCD are right triangle, Area= 1/2× length× breadth)
=(6×9)+ (4×17)
=54+68= 122cm²
Similar questions