Math, asked by rashikaif, 17 days ago

the area of rectangle 2l unit and breath 4b unit​

Answers

Answered by agrimasinghyadav25de
0

Answer:

The formula of perimeter and area of rectangle are explained step-by-step with solved examples.

If l denotes the length and b denotes the breadth of the rectangle, then the

Perimeter and Area of Rectangle

5Save

● Perimeter of the rectangle = 2(l + b) units

● Length of the rectangle = P2 - b units

● Breadth of the rectangle = P2 - l units

● Area of the rectangle = l × b sq. units.

● Length of the rectangle = Ab units .

● Breadth of the rectangle = Al units

● Diagonal of the rectangle = l2+b2−−−−−√ units

Here is your solution

Answered by AnanyaBaalveer
0

\large\underline{\sf{Solution}}

\large\underline{\sf{given}} \\ \large\underline{\sf{ length_{rectangle}  = 2l}} \\ \large\underline{\sf{breadth_{rectangle}  = 4b}}

__________________

 \large\underline{\sf{to \: find: area_{rectangle}}}

__________________

\underline{\sf{formula \: used:l \times b}}

\underline{\sf{where \: l = length}} \\ \underline{\sf{b = breadth}}

__________________

\underline{\sf{area_{rectangle}}} = l \times b

\underline{\sf{ area_{rectangle}}} = 2l \times 4b

\underline{\sf{area_{rectangle} = 8lb}}

__________________

\large\underline{\sf{more \: formulas \: of \: 2d \: shapes}} \\ {\sf{ perimeter_{equilateral \: triangle} = 3 \times \: s}} \\ \underline{\sf{area_{isosceles \: triangle} =  \frac{1}{2}  \times b \times h}} \\ \underline{\sf{area_{scalene \: triangle}  =  \sqrt{s(s - a)(s - b)(s - c)} }} \\ \underline{\sf{perimeter_{square}  = 4 \times side}} \\ \underline{\sf{perimeter_{rectangle} = 2(l + b) }}

__________________

Similar questions