the area of rectangle gets reduced by 9 square units if its length is reduced by 5 units and breadth is increased by 3 units if we increase the length by 3 units and the breadth by two units the increased by 67 square units find the dimensions of the rectangle
Answers
Answered by
12
Let length and breadth of rectangle be x unit and y unit respectively.
Area = xy
According to the question,
(x - 5) (y + 3) = xy - 9
⇒ 3x - 5y - 6 = 0 ... (i)
(x + 3) (y + 2) = xy + 67
⇒ 2x - 3y - 61 = 0 ... (ii)
By cross multiplication, we get
x/305-(-18) = y/-12-(-183) = 1/9-(-10)
x/323 = y/171 = 1/19
x = 17, y = 9
Hence, the length of the rectangle = 17 units and breadth of the rectangle = 9 units.
Area = xy
According to the question,
(x - 5) (y + 3) = xy - 9
⇒ 3x - 5y - 6 = 0 ... (i)
(x + 3) (y + 2) = xy + 67
⇒ 2x - 3y - 61 = 0 ... (ii)
By cross multiplication, we get
x/305-(-18) = y/-12-(-183) = 1/9-(-10)
x/323 = y/171 = 1/19
x = 17, y = 9
Hence, the length of the rectangle = 17 units and breadth of the rectangle = 9 units.
dholakhawa3865parfd3:
that is eliminationethod
Similar questions