Math, asked by prashantkumal613, 2 months ago

The area of rectangle is 105cm2.if its length is 21 cm, what is its breadth and perimeter

Answers

Answered by LoverBoy346
3

Answer:

  • breadth = 5cm
  • perimeter = 52 cm

Step-by-step explanation:

 \bold{ \boxed{ \huge \mathfrak{ \colorbox{gray}{Given :  - }}}}

 \:  \:  \:  \:  \:  :   \implies \: area \: of  \: rectangle = 105 \:  {cm}^{2}

\:  \:  \:  \:  \:  :   \implies \: length \: of \: rectangle = 21 \: cm

 \color{blue}\bold{ \boxed{ \huge \mathfrak{ \colorbox{pink}{To find:-}}}}

 \:  \:  \:  \:  \:  :  \implies \: perimeter \: of \: rectangle

\:  \:  \:  \:  \:  :  \implies \: breadth \: of \: rectangle

 \mathfrak{We  \: know \:  that  :  - }

 \:  \:  \:  \:  \:   \implies \: area \: of \: rectangle \:  = length \times breadth = 105 \:  {cm}^{2}

 \:  \:  \:  \:  \:   \implies 21\times breadth = 105 \:

 \:  \:  \:  \:  \:   \implies  breadth =  \frac{105}{21}

\:  \:  \:  \:  \:   \implies  breadth =  5 \: cm

\mathfrak{We  \: also \: know \:  that  :  - }

 \:  \:  \:  \:  \:   \implies \: perimeter \: of \: rectangle = 2(length  +  breadth)

\:  \:  \:  \:  \:   \implies2( 21 + 5) =52 \: cm

Hence \:  the  \: perimete r  \: and  \: breadth  \: of \:  rectangle \:  is \:  5  \: and  \: 52  \: cm \:  respectively

Answered by FiercePrince
10

Given that , The area of rectangle is 105cm² and it's length is 21 cm ..

Need To Find : The Breadth & Perimeter of Rectangle ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

❍ Let's say that , Breadth of the Rectangle be x cm .

As , We know that ,

⠀⠀⠀⠀⠀▪︎⠀Formula for Area of Rectangle :

\qquad \star \large\:\:\underline {\boxed {\pink{\pmb{\frak{  \:\:Area _{(\:Rectangle \:)}\:\:=\:Length  \:\times \:Breadth \:  \:\:sq.units\:}}}}}\\\\

⠀⠀⠀⠀⠀Here , Length of Rectangle is 21 cm & Area of Rectangle is 105 cm² .

\qquad \dashrightarrow \sf  \:\:Area _{(\:Rectangle \:)}\:\:=\:Length  \:\times \:Breadth \: \:\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf  \:\:Area _{(\:Rectangle \:)}\: \:=\:Length  \:\times \:Breadth \: \:\\\\\qquad \dashrightarrow \sf  \:\:105\:\:=\:21  \:\times \:x \: \:\\\\\qquad \dashrightarrow \sf  \: \:x \:=\:\dfrac{105}{21}\: \:\\\\\qquad \dashrightarrow \sf  \: \:x \:=\:\cancel{\dfrac{105}{21}}\: \:\\\\\qquad \dashrightarrow \sf  \: \:x \:=\:5\: \:\\\\\dashrightarrow \underline {\boxed{\pmb{\frak{\purple {\:x \:=\:5\:cm\:   }}}}}\:\\\\

Therefore,

  • Breadth of Rectangle is x = 5 cm .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀¤ Finding Perimeter of Rectangle :

As , We know that ,

⠀⠀⠀⠀⠀▪︎⠀Formula for Perimeter of Rectangle :

\qquad \star \large\:\:\underline {\boxed {\pink{\pmb{\frak{  \:\:Perimeter _{(\:Rectangle \:)}\:\:=2 \:( \:Length  \:+ \:Breadth \:  )\:\:units\:}}}}}\\\\

⠀⠀⠀⠀⠀Here , Length of Rectangle is 21 cm & Breadth of Rectangle is 5 cm .

\qquad \dashrightarrow \sf  \:\: \:\:Perimeter _{(\:Rectangle \:)}\:\:=2 \:( \:Length  \:+ \:Breadth \:  )\: \: \:\\\\

⠀⠀⠀⠀⠀⠀\underline {\boldsymbol{\star\:Now \: By \: Substituting \: the \: known \: Values \::}}\\

\qquad \dashrightarrow \sf  \:\: \:\:Perimeter _{(\:Rectangle \:)}\:\:=2 \:( \:Length  \:+ \:Breadth \:  )\: \: \:\\\\\qquad \dashrightarrow \sf  \:\: \:\:Perimeter _{(\:Rectangle \:)}\:\:=2 \:( \:21 \:+ 5 \:  )\:\: \:\\\\\qquad \dashrightarrow \sf  \:\: \:\:Perimeter _{(\:Rectangle \:)}\:\:=2 \:( \:26 \:  )\:\: \:\\\\\qquad \dashrightarrow \sf  \:\: \:\:Perimeter _{(\:Rectangle \:)}\:\:=\:52\: \:\\\\\dashrightarrow \underline {\boxed{\pmb{\frak{\purple {\:\:\:\:Perimeter _{(\:Rectangle \:)}\:\:=\:52\:cm   }}}}}\:\\\\

\qquad \therefore \underline {\sf Hence,  \:The \:Perimeter \:of\:Rectangle \: is \:\pmb{\bf 52 \: cm \:}\:.\:}\\

Similar questions