Math, asked by pranaym409, 2 months ago

the area of rectangle is 3000sq.m its sides are in the ratio 6:5,then its perimeter is​

Answers

Answered by ItzNiladoll
17

Step-by-step explanation:

GIVEN:-

THE AREA OF RECTANGLE = 3000sq.m

ITS SIDES ARE IN RATIO = 6:5

FORMULAS USED:-

PERIMETER OF RECTANGLE = 2( L+ B)

STEPS TO PROCEED:-

AREA OF RECTANGULAR COURTYARD

= LENGTH X BREADTH

STEPS:-

L : B = 6:5

l =  \frac{6}{5} b

3000 =  \frac{6}{5} bxb \\

 \frac{15000}{6}  = b ^{2}

b ^{2} = 2500 \\ b = 50 \\ l =   \frac{6}{5} b =  \frac{6}{5} x50

L = 60

PERIMETER OF RECTANGULAR COURTYARD

= 2(l+b)

= 2(60+50)

220m

Answered by SuitableBoy
85

{\large{\underbrace{\underline{\bf{Required~Answer:-}}}}}

 \\

\underline{\underline{\frak{\red\dag\;Given :}}}

 \\

  • Area of rectangle = 3000 m²
  • Length:Breadth = 6:5

 \\

\underline{\underline{\frak{\red\dag\;Solution:}}}

 \\

• In this question, we would first find the value of the length and breadth by using the given ratio of sides and the area.

• After finding the sides, we would use the formula of perimeter so as to find the final answer.

 \\

» Finding the sides :

We know,

  • Length : Breadth = 6 : 5

Let the ratios be 6x & 5x so,

  • Length = 6x
  • Breadth = 5x

And,

  • Area = 3000 m²

Using the formula for finding the Area of rectangle.

 \dashrightarrow \boxed{ \sf \: area _{ \: rectangle} = length \times breadth  }

Put the values..

 \colon \rarr \: \sf  \cancel{3000 }\:  {m}^{2}  = \cancel 6x \times 5x \\  \\  \colon \rarr \sf \:  \cancel{500} \:  {m}^{2}  =  \cancel5 {x}^{2}  \\  \\  \colon \rarr \: \sf  {x}^{2}  = 100 \:  {m}^{2}  \\  \\  \colon \rarr \sf \: x =  \sqrt{100 \:  {m}^{2} }  \\  \\  \colon \rarr \bf\:   \pink{x = 10 \: m}

So,

 \mapsto \sf \: length = 6x = 6 \times 10 \: m \\  \\  \leadsto \boxed{ \tt{  \purple{\: length} =  \bf{60 \: m \: }}}

And,

 \mapsto \sf \: breadth = 5x = 5 \times 10 \:  m\\  \\  \leadsto \boxed{ \tt{ \blue{breadth} =  \bf50 \: m}}

 \\

» Finding the perimeter :

We know

  • Length = 60 m
  • Breadth = 50 m

Using the formula for finding the perimeter..

 \dashrightarrow \boxed{ \sf \: perimeter _{rectangle} = 2 \times (length + breadth)} \\

Put the values..

 \colon \implies \sf \:  perimeter _{ \: rectangle} = 2 \big(60 + 50 \big) \: m \\  \\  \colon \sf \implies \: perimeter _{ \: rectangle} = 2 \times 110 \: m  \\  \\  \colon \implies \boxed{ \tt{ \red {perimeter _{ \: rectangle} =  \bf{ \pink{220}\: m}}}}

So,

★ The Perimeter of the rectangle would be 220 m.

 \\  \\

_____________________________

Similar questions