Math, asked by minukumariamit, 11 months ago

the area of rectangle is 4: 5 and the perimeter of the rectangle is 108 find its diagonals and its area ​

Answers

Answered by Anonymous
5

\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

\tt Given \begin{cases} \sf{Area \: of \: rectangle \: is \: 4 :5}  \\  \sf{Perimeter \: of \: rectangle \: is \: 108}\end{cases}

_____________________________

To Find :

We have to find Area and Diagonals of rectangle

______________________________

Solution :

Let 5x be Length (L)

Let 4x be Breadth (B)

We know that,

\Large{\star{\underline{\boxed{\sf{Perimeter = 2(L + B)}}}}}

108 = 2(5x + 4x)

108/2 = 9x

54 = 9x

54/9 = x

6 = x

_________________________

∴ Breadth = 4(6) = 24 cm

∴ Length = 5(6) = 30 cm

\large{\star{\underline{\boxed{\sf{Breadth = 24 \: cm}}}}}

\large{\star{\underline{\boxed{\sf{Length = 30 \: cm}}}}}

\rule{200}{2}

Now,

\Large{\star{\underline{\boxed{\sf{Area = L \times B}}}}}

Area = 24 * 30

Area = 720 cm²

\Large{\star{\underline{\boxed{\sf{Area = 720 \: cm^2}}}}}

\rule{200}{2}

\Large{\underline{\boxed{\sf{Diagonal \:  of \: rectangle \:  = \: \sqrt{(l^2 + b^2)}}}}}

Put Values ,

⇒ Diagonal = √((24)² + (30)²)

⇒Diagonal = √(576 + 900)

⇒Diagonal = √1476

⇒Diagonal = 38.4 cm

∴ Diagonal of rectangle is 38.4 cm

____________________________

#answerwithquality

#BAL

Similar questions