Math, asked by haneenmallick, 1 year ago

The area of rectangle is 600m ² and its
perimeter 100m - find its length and breadth​

Answers

Answered by akathwal004
2

hope this answer will be helpful ^_^

Attachments:
Answered by Brâiñlynêha
6

\huge\mathtt{SOLUTION:-}

\sf\underline{\blue{\:\:\: Given:-\:\:\:}}

Area if rectangle=600sq.m

Perimeter of rectangle=100m

\sf\underline{\pink{\:\:\: To\:Find:-\:\:\:}}

length and breadth of rectangle

Now

\sf {\red{A.T.Q}}

\boxed{\sf{Area\:of\: rectangle=length\times breadth}}

\boxed{\sf{Perimeter\:of\: rectangle=2(l+b)}}

  • Let length be x and breadth be y

\sf perimeter=2(l+b)\\ \\ \sf\implies 100=2(x+y)\\ \\ \sf\implies \cancel{\dfrac{100}{2}}=x+y\\ \\ \sf\implies  50=x+y\\ \\ \sf\implies x=50-y

  • The value of x is 50-y

  • and y=y

\sf\blue{Now\:Area\:of\: rectangle}

\sf\implies Area= y\times 50-y\\ \\ \sf\implies 600=50y-y{}^{2}\\ \\ \sf\implies y{}^{2}-50y-600=0\\ \\ \sf\implies y{}^{2}-(60-10)y-600=0\\ \\ \sf\implies y{}^{2}-60y+10y-600=0\\ \\ \sf\implies y(y-60)+10(y-60)=0\\ \\ \sf\implies (y-60)(y+10)=0

  • Y-60=0

  • y=60

  • The value of y is 60

Now The breadth of rectangle=60

length=50-60 =-10

or 10 because sides can't be negative

\huge\text{\blue{Proof:-}}

\sf\implies Area=l\times b\\ \\ \sf\:\:l=10\:\:\:\:b=60\\ \\ \sf\implies 600=10\times 60\\ \\ \sf\implies 600=600\\ \\ \sf\:\:\:L.H.S=R.H.S\:

\boxed{\sf{Length\:of\: rectangle=10m\:\: breadth=60m}}

Similar questions