the area of rectangle is x² + 2x-35 sq units. find the length and breadth of the rectangle.
don't answer irrevelantly
it will be reported..
Answers
Answer:
Area : 35y
Area : 35y 2
Area : 35y 2 +13y−12
Area : 35y 2 +13y−12Area of rectangle - Length×Breadth
Area : 35y 2 +13y−12Area of rectangle - Length×Breadth35y
Area : 35y 2 +13y−12Area of rectangle - Length×Breadth35y 2
Area : 35y 2 +13y−12Area of rectangle - Length×Breadth35y 2 +28y−15y
Area : 35y 2 +13y−12Area of rectangle - Length×Breadth35y 2 +28y−15y35y
Area : 35y 2 +13y−12Area of rectangle - Length×Breadth35y 2 +28y−15y35y 2
Area : 35y 2 +13y−12Area of rectangle - Length×Breadth35y 2 +28y−15y35y 2 +28y−15y
Area : 35y 2 +13y−12Area of rectangle - Length×Breadth35y 2 +28y−15y35y 2 +28y−15y7y(5y+4)−3(5y+4)
Area : 35y 2 +13y−12Area of rectangle - Length×Breadth35y 2 +28y−15y35y 2 +28y−15y7y(5y+4)−3(5y+4)(7y−3)(5y+4)
Area : 35y 2 +13y−12Area of rectangle - Length×Breadth35y 2 +28y−15y35y 2 +28y−15y7y(5y+4)−3(5y+4)(7y−3)(5y+4)∴ Length =(7y−3)
Area : 35y 2 +13y−12Area of rectangle - Length×Breadth35y 2 +28y−15y35y 2 +28y−15y7y(5y+4)−3(5y+4)(7y−3)(5y+4)∴ Length =(7y−3)Breadth =(5y+4)