Math, asked by bittuadi4, 5 hours ago

the area of rectangle is x²+5x-36 sq. unit. its length and breadth is reduced by 2/2units. find new area of rectangle.​

Answers

Answered by jaseelak519
3

Step-by-step explanation:

area =l*b= x^2 +5x -36

now, l= l- (2/2)=l-1

b= b-1

new area = (l-1)(b-1)= lb-l-b+1 = x^2 +5x -36 - l - b +1

= x^2 +5x -35-(l+b)

Answered by grishmalochanshresth
1

Solution,

             Given,

                         Area(a)= (x^2+5x-36)

Then,

        (x^2+5x-36)

         or, (x^2+9x-4x-36)

          or, {x(x+9)-4(x+9)}

          ∴ (x+9) (x-4)

Let,

      Length(l) = (x+9)

       Breadth(b) = (x+4)

Again,

         According to the question,

                                                     (l) - 2 = (x+9) - 2 = x+9-2 = (x+7)

                                                     (b) - 2= (x-4) - 2 = x-4-2= (x-6)

Then,

         New Area(a) = L × B

                               = (x+7) (x-6)

                               = x(x-6) + 7(x-6)

                               = x^2-6x+7x-42

                                = x^2+x-42 square units

Therefore, x^2+x-42 square units is the new area of the ground.

Similar questions