Math, asked by deepsarohe35, 3 months ago

The area of rectangle plot 70m long is 840m find the width of the plot​

Answers

Answered by TwilightShine
19

Answer :-

  • The width of the plot is 12 m.

Given :-

  • The area of the rectangular plot is 840 m².
  • Its length is 70 m.

To Find :-

  • The width of the plot.

Step-by-step explanation :-

Let the breadth (width) of the plot be b.

We know the length and the area of the plot.

So, to find the width, let's use the formula given below.

We know that :-

{\boxed {\bf Area\: of \:a\: rectangle = L \times B}}

Lets apply this formula!

Substituting the values,

\bf 840 \: m^2 = 70 \:m \times b

\bf \Rightarrow \dfrac{840\: m^2}{70\: m} = b

\bf \Rightarrow \dfrac{84\:m^2}{7\:m}  = b

\bf \Rightarrow 12 \:m = b

\bf \Rightarrow b = 12 \:m.

So, the width of the plot is 12 m.

Verification :-

To check our answer, lets multiply the length and breadth, and see whether we get the area or not. (As this is the formula)

⇒ Length = 70 m.

⇒ Breadth = 12 m.

Length × Breadth = 70 m × 12 m = 840 m².

Since we got the area by multiplying the length and breadth,

Hence verified!

Answered by DüllStâr
100

 \frak{  \pink\bigstar{ \purple{Required \: Solution:}}}

Given:

  • Area of rectanglur plot = 840 m²

  • Length of rectangular plot = 70m

To find:

  • Width of rectangular plot

Let:

  • Width of rectangular plot = x

Now we know:

 \\

 \bigstar \boxed{ \rm{}Area_{(rectangle)} = length \times width}

 \\

By using this formula we can find value of rectangle

 \\

 \leadsto\sf{}Area_{(rectangle)} = length \times width

 \\

 \leadsto\sf{}840 = 70 \times x

 \\

 \leadsto\sf{}\dfrac{840}{70}  = x

 \\

 \leadsto\sf{}x = \dfrac{840}{70}

 \\

 \leadsto\sf{}x = \dfrac{84\cancel0}{7\cancel0}

 \\

 \leadsto\sf{}x = \dfrac{84}{7}

 \\

 \leadsto\sf{}x = \dfrac{12 \times 7}{7}

 \\

 \leadsto\sf{}x = \dfrac{12 \times\cancel 7}{\cancel7}

 \\

 \leadsto\sf{}x = 12 \times 1

 \\

 \leadsto \underline{ \boxed{\sf{}x = 12~m }}

\therefore~\underline{\text{Width of rectangular plot = 12 m}}

know more

\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}

Attachments:
Similar questions