The area of region given by y=sin2x, 0
Answers
Answered by
0
The problem statements tells us that the range of the x values. 0≤x≤π0≤x≤π
Let's set up the integral equation for the area.
A=∫baf(x)−g(x)dx=∫π0(2sinx−sin2x)dxA=∫abf(x)−g(x)dx=∫0π(2sinx−sin2x)dx
Now we can integrate and evaluate to find the area.
A=−2cosx+cos2x2|π0A=(2+12)−(−2+12)A=4
Let's set up the integral equation for the area.
A=∫baf(x)−g(x)dx=∫π0(2sinx−sin2x)dxA=∫abf(x)−g(x)dx=∫0π(2sinx−sin2x)dx
Now we can integrate and evaluate to find the area.
A=−2cosx+cos2x2|π0A=(2+12)−(−2+12)A=4
Similar questions