Math, asked by Avitesh1, 2 months ago

The area of region x^2+2y-1=0, y^2+4x-4=0 and y^2-4x-4=0, in the upper half plane is ____. [ JEE MAINS 2021, July 22nd Second Shift }

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given curves are

\red{\rm :\longmapsto\: {x}^{2} + 2y - 1 = 0 -  -  - (1)}

\red{\rm :\longmapsto\: {y}^{2} + 4x - 4 = 0 -  -  - (2)}

\red{\rm :\longmapsto\: {y}^{2}  -  4x - 4 = 0 -  -  - (3)}

Now,

Consider,

\red{\rm :\longmapsto\: {x}^{2} + 2y - 1 = 0 }

can be rewritten as

\red{\rm :\longmapsto\: {x}^{2}=  - 2y + 1}

\red{\rm :\longmapsto\: {x}^{2}=  - 2\bigg(y  - \dfrac{1}{2}\bigg) }

represents the downward parabola whose vertex is (0, 0.5) and intersects the x - axis at (- 1, 0) and (1, 0)

[ See the attachment graph ( green curve ) ]

Now, Consider

\red{\rm :\longmapsto\: {y}^{2} + 4x - 4 = 0}

can be rewritten as

\red{\rm :\longmapsto\: {y}^{2}  =  - 4x  +  4}

\red{\rm :\longmapsto\: {y}^{2}  =  - 4(x  - 1)}

represents the left handed parabola whose vertex is (1, 0) and intersects the y - axis at ( 0, 2 ) and ( 0, - 2 ).

[ See the attachment graph ( purple curve ) ].

Now, Consider,

\red{\rm :\longmapsto\: {y}^{2} - 4x - 4 = 0}

can be rewritten as

\red{\rm :\longmapsto\: {y}^{2}  = 4x  +  4}

\red{\rm :\longmapsto\: {y}^{2}  = 4(x  +  1)}

represents the right handed parabola whose vertex is (- 1, 0) and intersects the y - axis at ( 0, 2 ) and ( 0, - 2 ).

[ See the attachment graph ( black curve ) ]

So, According to statement, we have to find the area bounded by the curve in the upper half plane.

Let we assume that,

From curve (1),

\red{\rm :\longmapsto\: {x}^{2} + 2y - 1 = 0 }

\red{\rm :\longmapsto\: y_1= \dfrac{1}{2} ( - {x}^{2} + 1)}

From Curve :- 2

\red{\rm :\longmapsto\: {y}^{2}  =  - 4(x  - 1)}

\red{\rm :\longmapsto\: {y}^{2}  = 4(1  - x)}

\red{\rm :\longmapsto\:y_2 = 2 \sqrt{1 - x}}

From Curve :- 3

\red{\rm :\longmapsto\: {y}^{2}  =  4(x +  1)}

\red{\rm :\longmapsto\:y_3 = 2 \sqrt{1 +  x}}

Hence, Required area is

\rm \:  =  \: 2 \: \displaystyle\int_{-1}^0\rm (y_3 - y_1) \: dx

\rm \:  =  \: 2 \bigg[\: \displaystyle\int_{-1}^0\sf 2 \sqrt{x + 1} \: dx \:  - \frac{1}{2}  \displaystyle\int_{-1}^0\sf ( -  {x}^{2} +   1) \: dx\bigg]

\rm \:  =  \: 4 \times \dfrac{2}{3}\bigg |{\bigg(x\bigg) }^{ \dfrac{3}{2} }\bigg |_{-1}^0 - \bigg | - \dfrac{ {x}^{3} }{3}  + x \bigg|_{-1}^0

\rm \:  =  \: \dfrac{8}{3}\bigg[0 - ( - 1)\bigg] - \bigg[ - \dfrac{1}{3} + 1\bigg]

\rm \:  =  \: \dfrac{8}{3} - \dfrac{2}{3}

\rm \:  =  \: \dfrac{6}{3}

\rm \:  =  \:  2 \: square \: units

Attachments:
Similar questions