Math, asked by charanjotsingh744, 8 months ago

The area of rhombus is 16 cm^2 and lenght of one of its diagonals is 4 cm. calculate the lenght of other diagonal. also find the side of the rhombus.explain it in steps​

Answers

Answered by Halley01
22

\sf\purple{Given :-}

  • \rm\green{Area\:=\:16cm^2}
  • \rm\green{One\:of\:its\:diagonal\:=\:4cm}
  • \rm\green{Other\:Diagonal\:=\:?}

\sf\purple{To \:Find :-}

  • \rm\green{Other\:Diagonal}

\sf\purple{Solution :-}

\sf\blue{The\:formula\:used} = {\sf{\underline{\boxed{\red{\sf{Area\:=\frac{1}{2}×d_1×d_2}}}}}}

\rm\blue{Here\:,}

Area = \sf\green{16cm^2}

\rm\blue{1st \:diagonal =} \sf\green{4cm}

\rm\blue{2nd\: diagonal = }\\\\

:\implies\sf{\frac{1}{2}×4cm×d_2}= 16cm^2\\\\

:\implies\sf{2cm×d_2}= 16cm^2\\\\

:\implies\sf{d_2 =\frac{16cm^2}{2cm}}\\\\

:\implies\sf{d_2 =\frac{\cancel16cm^2}{\cancel2cm}}\\\\

:\implies\sf{d_2 = 8cm\:Ans\:!}

_________________

\sf\purple{Keep\:in\:mind}

Formulas to Calculate Area of Rhombus :-

\rm\green{Using\:diagonals =}\\\\\sf{\boxed{\red{\sf{Area\:=\frac{1}{2}×d_1×d_2}}}}\\\\

\rm\green{Using\:base\:and\:height =}\\\\ \sf{\boxed{\red{\sf{Area\:=B × H}}}}\\\\

\rm\green{Using\:Trignometry =}\sf{\boxed{\red{\sf{Area\:=b^2×sin(a)}}}}

__________________

Similar questions