Math, asked by jasnoorsingh19, 1 day ago

the area of rhombus is 28 metre square one of its diagonal 4 cm find the length of other diagona​

Answers

Answered by Anonymous
39

Given :

  • Area = 28 m²
  • Diagonal 1 = 4 cm

 \\ \\

To Find :

  • Diagonal 2 = ?

 \\ \qquad{\rule{200pt}{2pt}}

 \dag Formula Used :

  •  {\underline{\boxed{\pmb{\sf{ Area{\small_{(Rhombus)}} = \dfrac{1}{2} \times D_1 \times D_2 }}}}}

Where :

  •  \sf{ D_1 } = Diagonal 1
  •  \sf{ D_2 } = Diagonal 2

 \\ \\

 \dag Calculating the Diagonal 2 :

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { Area = \dfrac{1}{2} \times D_1 \times D_2 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { 28 \times 2 = 1 \times 4 \times D_2 } \; \qquad \bigg\lgroup {\purple{\sf{ 1 \; m = 100 \; cm }}} \bigg\rgroup \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { 56 \times 100 = 4 \times D_2 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { \dfrac{5600}{4} = D_2 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; \sf { \cancel\dfrac{5600}{4} = D_2 } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \dashrightarrow \; \; {\underline{\boxed{\pmb{\sf { Diagonal \; 2 = 1400 \; cm }}}}} \; {\red{\pmb{\bigstar}}} \\ \\ \\ \end{gathered}

 \\ \\

 \therefore \; Second Diagonal of the Rhombus is 1400 cm .

 \\ \qquad{\rule{200pt}{2pt}}

Answered by AnanyaBaalveer
7

Given:-

  • Area of rhombus = 28m²
  • Diagonal 1= 4cm

To find:-

  • Length of the other diagonal

Formula used:-

\large \blue{\underline{ \green{ \boxed{\sf{  \red{ \implies{ \frac{1}{2} \times d_{1} \times  d_{2}  = area}}}}}}}

Where,

\large\underline{{ \boxed { \implies\sf{{ d_{1} = diagonal \: 1}}}}}

\large\underline{ \boxed{\sf{  \implies d_{2}  = diagonal \: 2}}}

Solution:-

We will put the values given in the question and will divide the area of rhombus from diagonal 1 to find the diagonal 2.We will first convert the m² to cm².Hence, To do this we have to multiply it with 10000.

Calculating for unit change:-

\large\underline{\sf{ \implies1 {m}^{2} = 10000 {cm}^{2}  }}

\large\underline{\sf{ \implies28 {m}^{2}  = 28 \times 10000 {cm}^{2} }}

\large\underline{\sf{ \implies280000 {cm}^{2} }}

Calculating for area :-

\large\underline{\sf{  \implies\frac{1}{2} \times 4cm \times  d_{2} = 280000 {cm}^{2} }}

\large\underline{\sf{ \implies2cm \times  d_{2} =  {280000cm}^{2} }}

\large\underline{\sf{  \implies d_{2} =  \frac{280000 {cm}^{2} }{2cm}  }}

\large\underline{\sf{ \implies d _{2} = 140000 {cm} }}

We can convert this value in m²

\large\underline{\sf{  \implies\frac{140000cm}{10000} }}

\large\underline{\sf{ \implies 14 {m}^{2} }}

______________________________________

Basic concept of rhombus:-

  • A rhombus is a 2-D figure.
  • It is a quadrilateral.
  • It's opposite sides are parallel.
  • It can be a Parallelogram.

______________________________________

Deriviation of m² to cm²

  • We know that 1m=100cm
  • We also know that when we square a number it is multiplied by itself.
  • So, 1m×1m=100cm×100cm
  • Henceforth we get:- 1m²=10000cm².

______________________________________

Similar questions