Math, asked by Raiyaan8686, 10 months ago

The area of Rhombus whose diagonals are 14 cm. and 15 cm........... .

Answers

Answered by INSIDI0US
14

Step-by-step explanation:

Question :-

  • Find the area of rhombus whose diagonals measures 14 cm and 15 cm.

To Find :-

  • Area of rhombus.

Solution :-

Given :

  • Diagonal (1) = 14 cm
  • Diagonal (2) = 15 cm

By using the formula,

{\sf{\longrightarrow Area\ of\ rhombus\ =\ \dfrac{1}{2} \times d_1 \times d_2}}

Where,

  • d = length of the diagonals

According to the question, by using the formula, we get :

{\sf{\longrightarrow Area\ of\ rhombus\ =\ \dfrac{1}{2} \times d_1 \times d_2}}

{\sf{\longrightarrow \dfrac{1}{\cancel2} \times \cancel{14} \times 15}}

{\sf{\longrightarrow 7 \times 15}}

{\sf{\longrightarrow 105\ cm^2}}

\therefore Hence, area of rhombus is 105 cm².

More To Know :-

\begin{gathered}\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}\end{gathered}

Answered by samiramishra
22

Answer:

  • 105 cm²

Step-by-step explanation:

Given

  • D1 = 14 cm
  • D2 = 15 cm
  • Area = ?

To find

  • Area

Formula

  • Area of Rhombus = ½ × product of its diagonal

Solution

We know that,

Area of Rhombus = ½ × product of its diagonal

→ ½ × 14 × 15

→ 7 × 15

→ 105

Hence,

  • Area of rhombus = 105cm².

 \rule{160pt}{0pt}

Additional Information

Area of Rectangle

 \sf \: l \:  \times  \: b

Area of square

 \sf {s}^{2}

Area of Parallelogram

 \sf \: b \:  \times  \: h

Area of circle

\pi \:  {r}^{2}

Similar questions