Math, asked by swarishreddy01, 2 months ago

The area of the base of a conical solid is 2464 cm2

and its volume is 17248 cm3

. Find the

curved surface area of the solid.​

Answers

Answered by priyarawat800
2

Appropriate Question :-

The area of the base of a conical solid is 2464 cm² and its volume is 17248 cm³. Find the curved surface area of the solid.

Given :-

The area of the base of a conical solid is 2464 cm² and its volume is 17248 cm³.

To Find :-

What is the curved surface area of the solid.

Formula Used :-

\clubsuit♣ Volume Of Cone Formula :

\mapsto \sf\boxed{\bold{\pink{Volume_{(Cone)} =\: \dfrac{1}{3}{\pi}r^2h}}}↦

Volume

(Cone)

=

3

1

πr

2

h

\clubsuit♣ Area of Circle Formula :

\begin{gathered}\mapsto \sf\boxed{\bold{\pink{Area_{(Circle)} =\: {\pi}r^2}}}\\\end{gathered}

Area

(Circle)

=πr

2

\clubsuit♣ Curved Surface Area Of Cone Formula :

\begin{gathered}\mapsto \sf\boxed{\bold{\pink{C.S.A_{(Cone)} =\: {\pi}rl}}}\\\end{gathered}

C.S.A

(Cone)

=πrl

where,

π = pie or 22/7

r = Radius

h = Height

l = Slant Height

Solution :-

First, we have to find the radius :

Given :

Area = 2464 cm²

According to the question by using the formula we get,

\implies \sf \dfrac{22}{7} \times r^2 =\: 2464⟹

7

22

×r

2

=2464

\implies \sf r^2 =\: \dfrac{2464 \times 7}{22}⟹r

2

=

22

2464×7

\implies \sf r^2 =\: \dfrac{\cancel{17248}}{\cancel{22}}⟹r

2

=

22

17248

\implies \sf r^2 =\: 784⟹r

2

=784

\implies \sf r =\: \sqrt{784}⟹r=

784

\implies \sf\bold{\green{r =\: 28\: cm}}⟹r=28cm

Now, we have to find the height :

Given :

Volume = 17248 cm³

Radius = 28 cm

According to the question by using the formula we get,

\implies \sf \dfrac{1}{3} \times \dfrac{22}{7} \times (28)^2 \times h =\: 17248⟹

3

1

×

7

22

×(28)

2

×h=17248

\implies \sf \dfrac{22}{21} \times 784 \times h =\: 17248⟹

21

22

×784×h=17248

\implies \sf \dfrac{17248}{21} \times h =\: 17248⟹

21

17248

×h=17248

\implies \sf h =\: \dfrac{\cancel{17248} \times 21}{\cancel{17248}}⟹h=

17248

17248

×21

\implies \sf \bold{\green{h =\: 21\: cm}}⟹h=21cm

Now, we have to find the value of slant height :

As we know that,

\clubsuit♣ Pythagoras Theorem Formula :

\begin{gathered}\mapsto \sf\boxed{\bold{\pink{l =\: \sqrt{r^2 + h^2}}}}\\\end{gathered}

l=

r

2

+h

2

where,

l = Slant Height

r = Radius

h = Height

Given :

Radius = 28 cm

Height = 21 cm

According to the question by using the formula we get,

\begin{gathered}\implies \sf l =\: \sqrt{(28)^2 + (21)^2}\\\end{gathered}

⟹l=

(28)

2

+(21)

2

\implies \sf l =\: \sqrt{784 + 441}⟹l=

784+441

\implies \sf l =\: \sqrt{1225}⟹l=

1225

\implies \sf\bold{\green{l =\: 35\: cm}}⟹l=35cm

Now, we have to find the curved surface area of the cone :

Given :

Radius = 28 cm

Slant height = 35 cm

According to the question by using the formula we get,

\begin{gathered}\longrightarrow \sf C.S.A_{(Cone)} =\: \dfrac{22}{7} \times 28 \times 35\\\end{gathered}

⟶C.S.A

(Cone)

=

7

22

×28×35

\longrightarrow \sf C.S.A_{(Cone)} =\: \dfrac{22}{7} \times 980⟶C.S.A

(Cone)

=

7

22

×980

\longrightarrow \sf C.S.A_{(Cone)} =\: \dfrac{21560}{7}⟶C.S.A

(Cone)

=

7

21560

\longrightarrow \sf\bold{\red{C.S.A_{(Cone)} =\: 3080\: cm^2}}⟶C.S.A

(Cone)

=3080cm

2

\therefore∴ The curved surface area or CSA of cone is 3080 cm².

Answered by mehramanvi01
1

✨Hello good morning swarish I am good what about you and thanks ✨

Similar questions