Math, asked by sharmajogendra93, 4 months ago

The area of the base of cylindrical tank is 38.5m^2 find the perimeter of the base.


quick it's urgent​

Answers

Answered by Ladylaurel
17

Answer :-

  • The perimeter is 21.93m.

Step-by-step explanation:

To Find :-

  • The perimeter of the base

Solution:

Given that,

  • The area of the base of cylindrical tank = 38.5m²

∴ The radius of the tank is,

We know,

 \bigstar \: \boxed{\bf{Area \: of \: {base}_{(cylinder)} = \pi \: {r}^{2}}}

Where,

  • π = 22/7
  • r = radius

Therefore,

 \bf{\longmapsto \: \pi \: {r}^{2} = 38.5} \\  \\  \\  \\  \bf{\longmapsto \:  \dfrac{22}{7} \times  \: {r}^{2} = 38.5} \\  \\  \\  \\ \bf{\longmapsto  \: {r}^{2} = 38.5 \times \dfrac{7}{22}} \\  \\  \\  \\ \bf{\longmapsto  \: {r}^{2} = \dfrac{38.5 \times 7}{22}} \\  \\  \\  \\ \bf{\longmapsto  \: {r}^{2} = \dfrac{268.8}{22}} \\  \\  \\  \\ \bf{\longmapsto  \: {r}^{2} = \cancel{\dfrac{268.8}{22}}} \\  \\  \\  \\ \bf{\longmapsto  \: {r}^{2} = 12.21} \\  \\  \\  \\ \bf{\longmapsto  \: r = \sqrt{12.21} } \\  \\  \\  \\ \bf{\longmapsto \:  \orange{r = 3.49}}

Hence, The radius is 3.49m. Now, perimeter :-

We know,

\bigstar \boxed{\bf{Perimeter = 2 \: \pi \: r}}

Therefore,

\bf{\longmapsto \: 2 \: \pi \: r} \\  \\  \\  \\ \bf{\longmapsto \: 2 \times \: \dfrac{22}{7} \times \: r} \\  \\  \\  \\ \bf{\longmapsto \: 2 \times \: \dfrac{22}{7} \times \: 3.49} \\  \\  \\  \\ \bf{\longmapsto \: \dfrac{22 \times 2}{7} \times \: 3.49} \\  \\  \\  \\ \bf{\longmapsto \: \dfrac{44}{7} \times \: 3.49} \\  \\  \\  \\ \bf{\longmapsto \: \dfrac{44 \times 3.49}{7}} \\  \\  \\  \\ \bf{\longmapsto \: \dfrac{153.56}{7}} \\  \\  \\  \\ \bf{\longmapsto \:  \cancel{\dfrac{153.56}{7}}} \\  \\  \\  \\ \bf{\longmapsto \:  \red{21.93}}

Hence, The perimeter is 21.93m.

Similar questions