Math, asked by kattalaxmi35, 1 year ago

the area of the largest circle that can be drawn inside a rectangle with sides 7 cm and 3.5 cm is​

Answers

Answered by Anonymous
73

\Large\underline{\underline{\sf \pink{Given}:}}

Sides of rectangle = 7cm and 3.5cm

\Large\underline{\underline{\sf \pink{To\:Find}:}}

Area of largest circle inside the rectangle = ?

\Large\underline{\underline{\sf \pink{Formula\:Used}:}}

\large{\boxed{\sf \red{Area\:of\:Circle(A)=πR^2} }}

\Large\underline{\underline{\sf \pink{Solution}:}}

Radius of circle (R)

\implies{\sf R=\dfrac{1}{2}×3.5 }

\implies{\sf R=1.75\:cm }

\implies{\sf Area\:of\:circle=πR^2}

\implies{\sf A=\dfrac{22}{7}×(1.75)^2}

\implies{\sf A=\dfrac{22}{7}×3.06 }

\implies{\sf A=\dfrac{67.37}{7} }

\implies{\sf A=9.62\:cm^2}

\Large\underline{\underline{\sf \pink{Answer}:}}

⛬ The area of the largest circle that can be drawn inside a rectangle is 9.62cm²

Attachments:
Answered by RvChaudharY50
54

\large\tt{Question:-}

  • Area of largest circle inside a rectangle .

{\large\bf{\mid{\overline{\underline{Given:-}}}\mid}}

  • Length of rectangle = 7cm
  • Breadth of rectangle = 3.5cm

\LARGE\bold\star\underline{\underline\textbf{Concept\:Used}}

  • when A circle with largest diameter is put inside a rectangle it will touch both the lengths of rectangle and its diameter is equal to the breadth of the rectangle ...

\Large\underline{\underline{\sf{Solution}:}}

Diameter of circle = 3.5cm

⛬ Radius of circle = 3.5/2 = 35/20 = 7/4 cm

Area of circle = πr² (with radius r)

so,

Required Area :--------

 \green{\pi \times ( \frac{7}{4} )^{2}} \\  \\  \implies \:  \pink{ \frac{ \cancel22}{ \cancel7}   \times  \frac{ \cancel49}{ \cancel4} } \:  \\  \\ \implies \:  \orange{ \frac{77}{2}}  =  \red{38.5 \:  {cm}^{2} }

Hence , Area of Largest Square will be 38.5cm² ..

Similar questions