Math, asked by theskittle, 9 days ago

The area of the quadrilateral ABCD in which AB = 6 cm, BC = 8 cm, CD = 8 cm, AD = 10 cm and
AC = 10 cm. (in cm) is
(a) 8 13
(b) 8(3+sqrt21 )
(c) 8sqrt21
(d) 24.

Answers

Answered by vasudha021889
0

Answer:

(d) 24. answer is correct

Answered by ChikkukiAshee
3

Answer:

\large{ \frak{ \green{ \underline{ \underline{☘ Question}}}}}

The area of the quadrilateral ABCD in which AB = 6 cm, BC = 8 cm, CD = 8 cm, AD = 10 cm and AC = 10 cm is

\large{ \frak{ \red{ \underline{ \underline{✿Answer}}}}}

\large{ \frak{ \underline{Given :}}}

AB = 6 cm

BC = 8 cm

CD = 8 cm

AD = 10 cm

AC (diagonal of Quadrilateral) = 10 cm

 \large{ \frak{ \underline{To  \: find :}}}

Area of \sf{ \square{ABCD}}

 \large{ \frak{ \underline{Formula \:  used :}}}

Heron's formula

 \sf =  \sqrt{s(s - a)(s - b)(s - c)}

Where a, b & c are the sides of a triangle

And s is the semi perimeter

 \sf \: s =  \frac{a + b + c}{2}

 \large{ \frak{ \underline{Solⁿ :}}}

\sf{ \square{ABCD}} is divided into two triangles \sf{ \triangle{ABC}} and \sf{ \triangle{ADC}}

∴ Area of \sf{ \square{ABCD}} = Area of \sf{ \triangle{ABC}} + Area of \sf{ \triangle{ADC}}

Now,

In \sf{ \triangle{ABC}}

 \sf \: a = 6 \: cm

 \sf \: b = 8 \: cm

 \sf \: c = 10 \: cm

 \sf∴s =  \frac{6 + 8 + 10}{2} cm

 \sf \:  \:  \:  \:  \:  \:   \:  = \frac{ \cancel{24}}{ \cancel{2}} \: cm

\sf \:  \:  \:  \:  \:  \:   \:   = 12cm

Area of \sf{ \triangle{ABC}}

 \sf =   \sqrt{12(12 - 6)(12 - 8)(12 - 10)}  {cm}^{2}

 \sf =  \sqrt{12 \times 6 \times 4 \times 2}  {cm}^{2}

 \sf =  \sqrt{2 \times 2 \times 3 \times 2 \times 3 \times 2 \times 2 \times 2 \:}  {cm}^{2}

 \sf =  \sqrt{ {2}^{2} \times {2}^{2} \times  {2}^{2}  \times  {3}^{2}} \:  {cm}^{2}

 \sf = 2 \times 2 \times 2 \times 3 \:  {cm}^{2}

 \sf = 24 \:  {cm}^{2}

In \sf{ \triangle{ADC}}

 \sf \: a = 8 \: cm

 \sf \: b = 10 \: cm

 \sf \: c = 10 \: cm

 \sf∴s = \frac{8 + 10 + 10}{2}  \: cm

 \sf \:  \:   \: \:   \:  \: \:  =  \frac{ \cancel{28}}{ \cancel{2}} cm

\sf \:  \:   \: \:   \:  \: \:  = 14 \: cm

Area of \sf{ \triangle{ADC}}

 \sf =  \sqrt{14(14 - 8)(14 - 10)(14 - 10)}  \: cm {}^{2}

 \sf =  \sqrt{14 \times 6 \times 4 \times 4}  \: cm {}^{2}

 \sf =  \sqrt{2  \times 7 \times 2 \times 3 \times 2 \times 2 \times 2 \times 2}  \:  {cm}^{2}

 \sf =  \sqrt{ {2}^{2}  \times  {2}^{2}  \times  {2}^{2}  \times 3 \times 7} \:  {cm}^{2}

 \sf = 8 \sqrt{21} cm {}^{2}

∴ Area of \sf{ \square{ABCD}}

 \sf = 24  + 8 \sqrt{21}  \: cm {}^{2}

 \sf = 8(3 +  \sqrt{21} )cm {}^{2}

Hence, ⓑ  \sf  8(3 +  \sqrt{21} )cm {}^{2}  is correct.

 \large{ \frak{ \color{blue}{❅ \: hope \: it \: helps...}}}

 \huge{ \underline{  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}

Attachments:
Similar questions