Math, asked by pranv2004, 9 months ago

The area of the quadrilateral formed by the points (2,1), (4,3), (-1,2), (-3,-2) is​

Answers

Answered by mysticd
0

 Let \:  A(2,1),B(4,3),C(-1,2) \:and \:D(-3,-2) \:are

 Vertices \:of \: a \: Quadrilateral.

 Join \: A\:and \: C

 i)Area \: of \: \triangle ABC

 =\frac{1}{2}|x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})|

 = \frac{1}{2}|2(3-2)+4(2-1)+(-1)(1-3)|

 = \frac{1}{2}|2\times 1+4(1)+(-1)(-2)|

 = \frac{1}{2}|2+4+2|

 = \frac{8}{2}

 = 4 \: --(1)

ii) Area \: of \: \triangle ACD

 =\frac{1}{2}|x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})|

 = \frac{1}{2}|2(2+2)+(-1)(-2-1)+(-3)(1-2)|

 = \frac{1}{2}|2\times 4+(-1)(-3)+(-3)(-1)|

 = \frac{1}{2}|8+3+3|

 = \frac{14}{2}

 = 7\: --(2)

 Now, iii) Area \:of \: Quadrilateral\:ABCD

 = (1) + (2)

 = 4+ 7

 \green{= 11 \: square \:units}

Therefore.,

 \red{ Area \:of \: Quadrilateral\:ABCD}

 \green { = 11 \: square \:units}

•••♪

Attachments:
Similar questions