Math, asked by mks110802gmailcom, 1 year ago

The area of the quadrilateral whose sides measure 9 cm, 40 cm, 28 cm and 15 cm and in which the angle between the first two sides is a right angle is

Answers

Answered by ajay99
0
92 cm is the correct answer . 92 cm
Answered by Anonymous
24

 \sf \large \underline{ \color{aqua}SOLUTION:-}

•Let ABCD be the given quadrilateral in which it is given,

 \sf BC=40cm,CD=28cm \\  \sf,DA=15cm \: and \angle ABC=90⁰ \\  \\

 \sf  \blue{ \underline{by  \: Pythagoras  \: theorum:}}

 \sf AC= \sqrt{AB²+BC²} cm= \sqrt{(9)²+(40)²} cm \\  \\

 \sf \implies  \sqrt{1681} cm=41cm \\  \\

 \sf  \green{Area  \: of  \: \triangle ABC}={ \bigg(} \frac{1}{2} ×AB×BC {\bigg)} \\  \\

 \sf \implies{  \bigg(}\frac{1}{2}  \times 9 \times 40 {\bigg)} \\  \\

 \sf \implies 180cm²</p><p></p><p> \\  \\

 \sf  \red {In  \triangle ACD} \\  \\

 \sf Let  \: a=AC=41cm \\  \sf,b=CD=28cm \\  \sf ,c=DA=15cm \\  \\

 \sf \therefore  s= \frac{a+b+c}{2}   =  \frac{41 + 28 + 15}{2}  = 42cm\\  \\

 \sf \therefore(s-a)=1cm,(s-b)=14cm  \: and \: (s-c)=27cm \\  \\

 \sf \therefore Area \:  of \:  \triangle ACD= \sqrt{s(s-a)(s-b)(s-c)}  \\  \\

 \sf  \implies\sqrt{42×1×14×27} cm² \\  \\

 \sf \implies (14×3×3)cm²=126cm² \\  \\

 \sf \purple{ Now,Area  \: of \: quadrilateral  \: ABCD=} \\

 =  \sf  \green{area  \: of \:  \triangle ABC}+ \red{area  \: of  \:  \triangle ACD} \\

= \sf (180+126)cm²=306cm² \\  \\

Similar questions