Math, asked by sakshammittal43, 5 days ago

The area of the rectangular field is given as (3ac+2bc+3ad+2bd) sq.unit. Find the length of the field if the width is (3a+2b) units.

Answers

Answered by vishalns1994
0

Answer:

The length of the field is  (c+d) units

Step-by-step explanation:

Given : Area of rectangular field = ( 3ac+2bc+3ad+2bd) sq. units

            Width of the field = ( 3a + 2b) units

             Length of the field = ?

Solution :Area of rectangular field = ( 3ac+2bc+3ad+2bd) sq. units

                Rearranging the above equation

                                                        = 3ac + 3ad + 2bc + 2bd

                 Factorizing the above equation  

                                                        = 3a( c+d) + 2b (c+d)

                                                        = (c+d)(3a+2b)

We know, Area = Length x width

Substituting the values

∴ Length = Area/ width

               = (c+d) ( 3a+2b) / (3a+2b)

               = (c+d) units

Similar questions