Math, asked by nagahari1502, 8 months ago

the area of the region between y=cosx and y=sin2x in 0 to pi/2

Answers

Answered by raushankumar08534
0

Answer:

9क्ष्गेज्ज्सीव्ज़ीस्ज़्ह

Answered by kijbilerutika
0

Answer:

y=cos(x) , y=sin(2x) , x=0 , x=pi/2

Refer the attached image, y=cos(x) is plotted in red color and y=sin(2x) is plotted in blue color.

From graph,

cos(x) is above sin(2x) from 0 to pi/6

sin(2x) is above cos(x) fron pi6 to pi/2

Area of the region enclosed by the given curves A=int_0^(pi/6)(cos(x)-sin(2x))dx+int_(pi/6)^(pi/2)((sin(2x)-cos(x))dx

A=[sin(x)-(-cos(2x)/2)]_0^(pi/6)+[-cos(2x)/2-sin(x)]_(pi/6)^(pi/2)

A=[sin(x)+cos(2x)/2]_0^(pi/6)+[-cos(2x)/2-sin(x)]_(pi/6)^(pi/2)

A=(sin(pi/6)+cos(pi/3)/2)-(sin(0)+cos(0)/2)+(-cos(pi)/2-sin(pi/2))-(-cos(pi/3)/2-sin(pi/6))

A=(1/2+1/4)-(0+1/2)+(1/2-1)-(-1/4-1/2)

A=1/4-1/2+1/4+1/2

A=1/2

Similar questions