Math, asked by demonflames889759, 3 months ago

the area of the region bounded by the parabola y=x^2 and the line y=4x is​

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

graphs :  y=x^{2}\: and \: y=4x

Required area

 \int \limits^{4}_{0} 4xdx -  \int \limits^{4}_{0} {x}^{2} dx \\

 = 4 \int \limits^{4}_{0} xdx -  \int \limits^{4}_{0} {x}^{2} dx \\

 = 4 [ \frac{ {x}^{2} }{2} ]^{4} _{0}   -  [ \frac{ {x}^{3} }{3} ]^{4} _{0}   \\

 =  {4}^{3} ( \frac{1}{2}  -  \frac{1}{3} ) \\

 = 64 \times  \frac{1}{6}  \\

 =  \frac{32}{3} \: sq. \: units  \\

Answered by rajubirajdar1973
1

Step-by-step explanation:

मैंने जो आप कोई आंसर दिया है यह एक फोटो है उसको क्लिक करें अब को फुल आंसर मिल जाएगा

Attachments:
Similar questions