Math, asked by sobanasheela, 8 months ago

The area of the rhombus is 128 sq.cm and the length of one diagonal is 32 cm . The length of the other diagonal is
12 cm or 4 cm or 20 cm or 8 cm ​

Answers

Answered by gayathrikoritala
2

Step-by-step explanation:

area of rhombus=1/2*d1*d2

so here 128=1/2*32*d2

128=16*d2

d2=128/16

d2=8cm

Answered by sethrollins13
19

Given :

  • Area of Rhombus is 128 cm².
  • One of its diagon is 32 cm.

To Find :

  • Length of other Diagonal.

Solution :

\longmapsto\tt{Let\:other\:diagonal\:be=x}

Using Formula :

\longmapsto\tt\boxed{Area\:of\:Rhombus=\dfrac{1}{2}\times{{d}_{1}}\times{{d}_{2}}}

Putting Values :

\longmapsto\tt{128=\dfrac{1}{{\cancel{2}}}\times{{\cancel{32}}}\times{x}}

\longmapsto\tt{128=16\times{x}}

\longmapsto\tt{\cancel\dfrac{128}{16}=x}

\longmapsto\tt\bf{x=8}

So , The Length of other Diagonal is 8 cm..

_______________________

VERIFICATION :

\longmapsto\tt{128=\dfrac{1}{2}\times{{d}_{1}}\times{{d}_{2}}}

\longmapsto\tt{128=\dfrac{1}{{\cancel{2}}}\times{32}\times{{\cancel{8}}}}

\longmapsto\tt{128=32\times{4}}

\longmapsto\tt\bf{128=128}

HENCE VERIFIED

Similar questions