Math, asked by mortal81, 10 months ago

the area of the ring is 40πcm^3. if the width of the ring is 4cm, find the .
(¡) sum of the radio of the circle
(¡¡) the difference in the circumference of the circle .​

Answers

Answered by Anonymous
24

\sf\large{\underline{\green{\underline{\red{Question:-}}}}}

the area of the ring is 40πcm^3. if the width of the ring is 4cm, find the .

  • (¡) sum of the radio of the circle
  • (¡¡) the difference in the circumference of the circle .

\sf\large{\underline{\pink{\underline{\red{Given:-}}}}}

  • \sf area\: of \:the \:Ring = 40πcm^3

  • \sf width\:of\:the\:ring= 4cm

\sf\large{\underline{\blue{\underline{\red{To\:Find:-}}}}}

  • sum of the radio of the circle .
  • the difference in the circumference of the circle .

\sf\large{\underline{\red{\underline{\green{FORMULA\:USED:-}}}}}

\sf{\fbox{\red{\underline{\blue{Area\:of\:ring= π(R^2-r^2)}}}}}

\sf\large{\underline{\green{\underline{\red{Solution:-}}}}}

\sf→ Area\:of\:ring= π(R^2-r^2)= 40π\\\sf→ (R+r)(R-r)=40\\\sf→ (R+r)=40\\\sf→ (R+r)=\frac{40}{4}\\\sf→ R+r=10cm

\rule{220}

\sf→ R+r=10 \\\sf→{\underline{R-r=4}}

\sf→ 2R=14\\\sf→ R=\frac{14}{2}\\\sf→ R=7\\\sf→ r=3cm

Now,

Difference in the circumference of the circle

\sf→ 2πR-2πr\\\sf→ 2π(R-1)

  \sf→2π(4)=8πcm

Answered by MKSrivastava
0

Answer:

make me brainliest

Step-by-step explanation:

make me brainliest

Similar questions