Math, asked by mrgehri, 10 months ago

the area of the sector of a circle of radius r/2 and central angle 2 theta is​

Answers

Answered by pheoblivex
2

Answer:

pi*theta*r/720

Step-by-step explanation:

let the radius of a circle be r and central angle of one of its sectors be theta.

we know, area(sector)=theta/360*pi*r^2

                                    =(2Q*pi*r^2)/(360*4)

                                     =Q*pi*r/720                               [let Q=theta]

Answered by sanjeevk28012
0

Answer:

The Area of the sector of circle with radius \dfrac{r}{2} and central angle 2 Ф  is \dfrac{\Pi \times r^{2}\times \ \Theta }{720^{\circ}}

Step-by-step explanation:

Given as :

The radius of the circle = \dfrac{r}{2}

The central angle = 2 Ф

Let The Area of the sector of circle = A

According to question

Area of the sector of circle = \frac{\Pi \times radius^{2}\times \Theta }{360^{\circ}}

Or, A = \dfrac{\Pi \times r^{2}\times \Theta }{360^{\circ}}

Or, A = \dfrac{\Pi \times (\frac{r}{2})^{2}\times \ 2\Theta }{360^{\circ}}

Or, A = \dfrac{\Pi \times r^{2}\times \ \Theta }{720^{\circ}}

So, The Area of the sector of circle = A = \dfrac{\Pi \times r^{2}\times \ \Theta }{720^{\circ}}

Hence, The Area of the sector of circle with radius \dfrac{r}{2} and central angle 2 Ф  is \dfrac{\Pi \times r^{2}\times \ \Theta }{720^{\circ}}     Answer

Similar questions