Math, asked by neyaziali, 1 year ago

The area of the triangle formed by point A(0,1),B(0,5) and C(3,4) is ( in sq.units

Answers

Answered by jasleenkaur14
9
ar=1/2×base×alt
=1/2×4×3
=6square units
Answered by wifilethbridge
2

Answer:

4.105 unit^2

Step-by-step explanation:

We are given a triangle which is formed by the points A(0,1),B(0,5) and C(3,4)

So, the sides of the triangle will be AB,BC,AC

First to find the length of AB

(x_1,y_1)=(0,1)

(x_2,y_2)=(0,5)

Now we will use distance formula :

d=\sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}

Substitute the values

d=\sqrt{(0-0)^2 +(5-1)^2}

d=\sqrt{(0)^2 +(4)^2}

d=\sqrt{16}

d=4

So, length of AB is 4 units

Now to find the length of BC

(x_1,y_1)=(0,5)

(x_2,y_2)=(3,4)

Now we will use distance formula :

d=\sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}

Substitute the values

d=\sqrt{(3-0)^2 +(4-5)^2}

d=\sqrt{(3)^2 +(-1)^2}

d=\sqrt{9+1}

d=\sqrt{9+1}

d=3.16

So, length of BC is 3.16 units

Now to find the Length of AC

(x_1,y_1)=(0,1)

(x_2,y_2)=(3,4)

Now we will use distance formula :

d=\sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}

Substitute the values

d=\sqrt{(3-0)^2 +(4-1)^2}

d=\sqrt{(3)^2 +(3)^2}

d=\sqrt{9+9}

d=\sqrt{18}

d=4.24

So, length of AC is 4.24 units .

So, AB = 4 units

BC= 3.16 units

AC= 4.24 units

Now to find area of triangle we will use heron's formula :

Area= \sqrt{s(s-a)(s-b)/(s-c)}

Where s=\frac{a+b+c}{2}

AB = a = 4 units

BC= b = 3.16 units

AC= c = 4.24 units

Substitute the values

s=\frac{4+3.16+4.24}{2}

s=5.7

Area= \sqrt{5.7(5.7-4)(5.7-3.16)/(5.7-4.24)}

Area= 4.105 unit^2

Hence The area of the triangle formed by point A(0,1),B(0,5) and C(3,4) is  4.105 unit^2

Similar questions