Math, asked by dsfsddffsddf, 4 months ago

The area of the Triangle shown is 30 metres square. Find the length of its longest side

Attachments:

Answers

Answered by Technogamerz11209
2

Answer:

ty_/737hduand and is 744

Answered by susmita2891
1

\huge\color{cyan}\boxed{\colorbox{black}{✿Answer✿}}

 {\orange{\bigstar}} \ {\underline{\green{\textsf{\textbf{Given :-}}}}}

Area of triangle = 30 m²

{\blue{\bigstar}} \ {\underline{\pink{\textsf{\textbf{To Find :-}}}}}

Hypotenuse (2x-1)

{\red{\bigstar}} \ {\underline{\purple{\textsf{\textbf{Formula Used :-}}}}}

{\boxed{\green{\textsf{\textbf{Area of Triangle= }}} {\blue{\sf{\½ × B× H}}}}}

where,

B = Base

H = Height

{\orange{\bigstar}} \ {\underline{\blue{\textsf{\textbf{Solution :-}}}}}

Area = ½ × (x - 2 ) × ( x+5)

30 = ½ × x² + 5x -2x -10

30 × 2 = x² + 3x - 10

0 = x² +3x -70

0 = x² + (10-7)x -70

0 = x² +10x -7x - 70

0 = x(x + 10) - 7 ( x + 10)

0 = (x + 10) (x -7)

x = 7 or -10

Now,

Taking x = 7 :-

 Hypotenuse= 2x - 1

 Hypotenuse = 2(7) - 1

 Hypotenuse= 14 - 1

 Hypotenuse= 13m

Now,

Taking x= -10

 Hypotenuse= 2x - 1

 Hypotenuse = 2(-10) - 1

 Hypotenuse= -20 - 1

 Hypotenuse= -21m

Since, length\: can't\:be\:in\: negative.

Therefore \:Hypotenuse \:is\:13m\:Base \:is\:5m\:and\:Height\:is\:12m

Similar questions