Math, asked by poter4936, 1 month ago

The area of the triangle whose vertices are (2,3) (2,4) (2,5) is A) O sq units B) 2 sq units C) 6 sq units D) 12 sq units ​

Answers

Answered by Aliyasoob
0

correct \: answer \: is \: a) \: 0 \: sq. \: units \\

REASON

if \: we \: plot \: it \: on \: graph \: it \: will \: form \: a \: straght \: line \: as \: it \: cannot \: be \: triangle  \\ \: thus \: 0 \: sq. \: units \: is \: area

Answered by FiercePrince
7

Given that , The three vertices of Triangle are : (2,3) , (2,4) , (2,5) .

Need To Find : Area of Triangle ?

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━

❍ Let's say that the three vertices of Triangle be A ( 2,3 ) , B ( 2 , 4 ) , C( 2 , 5 ) .

⠀⌬⠀We've three vertices of Triangle . Formula to Find Area of Triangle using Co Ordinates is given by

\qquad \star \:\:\underline {\boxed {\frak{ Area\:_{\:(Triangle)\:}\:=\:\dfrac{1}{2}\:\Bigg[ \: x_1 \:\bigg(y_2 - y_3 \bigg)  + \: x_2 \:\bigg(y_3 - y_1 \bigg) \:+\:\: x_3 \:\bigg(y_1 - y_2 \bigg) \:\Bigg]\:sq.units \:}}}\\\\

⠀⠀⠀⠀⠀Where ,

  • x₁ = 2 , y₁ = 3
  • x₂ = 2 , y₂ = 4
  • x₃ = 2 , y₃ = 5

\\\dag \:\underline {\frak{Putting \:known \:Values \:in \:Formula \:\::\:}}\\

:\implies \sf Area\:_{\:(\:\triangle\:\:ABC\:)\:}\:=\:\dfrac{1}{2}\:\Bigg[ \: x_1 \:\bigg(y_2 - y_3 \bigg)  + \: x_2 \:\bigg(y_3 - y_1 \bigg) \:+\:\: x_3 \:\bigg(y_1 - y_2 \bigg) \:\Bigg]\:\\\\\\:\implies \sf Area\:_{\:(\:\triangle\:\:ABC\:)\:}\:=\:\dfrac{1}{2}\:\Bigg[ \: 2 \:\bigg( 4 - 5 \bigg)  + \: 2 \:\bigg(5 - 3 \bigg) \:+\:\: 2 \:\bigg( 3  - 4 \bigg) \:\Bigg]\:\\\\\\:\implies \sf Area\:_{\:(\:\triangle\:\:ABC\:)\:}\:=\:\dfrac{1}{2}\:\Bigg[ \: 2 \:\bigg( -1 \bigg)  + \: 2 \:\bigg( 2 \bigg) \:+\:\: 2 \:\bigg( -1 \bigg) \:\Bigg]\:\\\\\\:\implies \sf Area\:_{\:(\:\triangle\:\:ABC\:)\:}\:=\:\dfrac{1}{2}\:\Bigg[ \:  \:\bigg( -2 \bigg)  + \:  \:\bigg( 4 \bigg) \:+\:\:  \:\bigg( -2 \bigg) \:\Bigg]\:\\\\\\:\implies \sf Area\:_{\:(\:\triangle\:\:ABC\:)\:}\:=\:\dfrac{1}{2}\:\Bigg[ \:  \: -2   + \:  4  \:\: -2  \:\Bigg]\:\\\\\\:\implies \sf Area\:_{\:(\:\triangle\:\:ABC\:)\:}\:=\:\dfrac{1}{2}\:\times \:  \: 0 \:\:\\\\\\:\implies \underline {\boxed {\pmb{\frak{\purple { Area\:_{\:(\:\triangle\:\:ABC\:)\:}\:=\: \:  \: 0 \:sq.units\:}}}}}\:\:\bigstar \\\\

⠀⠀⠀⠀⠀As , The Final answer [ Area of Triangle ] is 0 sq.units which proves that , the given vertices are not of Triangle and they didn't form any Triangle .

\\\therefore \:\underline {\sf Hence,  \:The \:Area \:of \:Triangle \:is \:\:\pmb{\bf\: Option \:A\;)\: 0 \:sq.units \:}\:.}\\

Similar questions