Math, asked by pawaraniket229, 4 months ago

The area of the triangle whose vertices are P(2,-6), Q(5,4) and R(-2,4) is​

Answers

Answered by jaynickgeenompad
0

Answer:

6-

Step-by-step explanation:

yan ☀️ddsbziskcugxutsszluxzziyckhxadigc

Answered by pratham7777775
10

Answer:

Step-by-step explanation:

Using integration finding area of triangle P(2,5)Q(4,7) and R(6,2)

Equation of line PQ

(y−5)=

4−2

7−5

(x−2)⇒y=x+3

Equation of line QR

(y−7)=

6−4

2−7

(x−4)⇒y=

2

−5

x+17

Equation of line PR

(y−5)=

6−2

2−5

(x−2)⇒y=

4

−3

x+

2

13

Area of △PQR

=(area under PQ)+(area under QR)−(area under PR)

=∫

2

4

(x+3)dx+∫

4

6

(−

2

5x

+17)dx−∫

2

6

(

4

−3

x+

2

13

)dx

=[

2

x

2

+3x]

2

4

+[

4

−5x

2

+17x]

4

6

−[

8

3x

2

+

2

13x

]

2

6

=6+3(4−2)+

4

−5

(36−16)+17(6−4)−

8

3

×32−

2

13

×4

=6+6−

4

5

×20+34−12−26

=12−25+34−14=7 sq.unit

Similar questions