Math, asked by akibsaifiak, 7 months ago

The area of the triangle with sides 60 cm, 100 cm and 140 cm is of the form 1500 √x cm
Find the value of x.​

Answers

Answered by naira5990
1

Answer:

9405 - maybe

Step-by-step explanation:

Use heron's formula & you will get the answer.

Hope it helps.

Thank you.

Answered by Aryan0123
5

Given :-

♦ Sides of a triangle = 60 cm, 100cm, 140cm

♦ Area = 1500 √x cm²

To find :-

x = ?

Method :-

 \bf{ apply \: Heron's \: formula} \\  \\  \sf \: {here} \\  \tt{s = semi \: perimeter =  \frac{60 + 100 + 140}{2} } \\  \sf{s = 150  \: cm } \\ \\  \sf{a = first \: side = 60 \: cm} \\  \sf{b = second \: side =100 \: cm } \\  \sf{c = third \: side = 140 \: cm} \\  \\  \sf{Area =  \sqrt{s(s - a)(s - b)(s - c)} } \\  \\  \implies \sf Area =  \sqrt{150(150 - 60)(150 - 100)(150 - 140)}  \\  \\  \implies  \sf{Area =  \sqrt{150 \times 90 \times 50 \times 10} } \\  \\  \implies \sf{Area =  \sqrt{15 \times 9 \times 5 \times 100 \times 100} } \\  \\ since \: 9 \: and \:100 \: are \: perfect \: squares \\  \\  \sf{area = 3 \times 10 \times 10 \sqrt{15 \times 5} } \\  \\  \implies \sf{Area = 300 \sqrt{75} } \\  \\  \implies \sf{Area = 300 \sqrt{25 \times 3} } \\  \\  \implies \sf{Area = 300 \times 5 \sqrt{3} } \\  \\  \therefore \boxed{  \boxed{ \bf{Area = 1500 \sqrt{3} \: cm {}^{2} }}} \\  \\

x = 3

Similar questions