Math, asked by BrainlyBerilius, 1 month ago

The area of the triangular field. if sides of the triangular field are 325m, 300m, 125m?

Answers

Answered by Anonymous
35

Answer:

Hope its helpful

have a nice day ahead

Attachments:
Answered by Theking0123
194

★ Required answer:-

  • Area of the triangular field is 18750 m².

★ Given:-    

  • Length of side a = 325m
  • Length of side b = 300m
  • Length of side c = 125m

★To find:-    

  • Area of the triangle

★ Formula used:-    

  • \boxed{\sf{Semi\:-\:perimeter\:=\:\dfrac{a\:+\:b\:+c}{2}}}

Where,

  • a = Length of side a = 325m
  • b = Length of side b = 300m
  • c = Length of side c = 125m

\qquad\qquad\underline{\qquad\qquad\qquad\qquad}

  • \boxed{\sf{Area\:_{(\:TRIANGLE\:)}\:=\:\sqrt{s\:(\:s\:-\:a\:)\:(\:s\:-\:b\:)\:(\:s\:-\:c\:)\:} }}

Where,

  • s = semi - perimeter
  • a = Length of side a
  • b = Length of side b
  • c = Length of side c

★ Solution:-    

~Semi - perimeter

\qquad\sf{:\implies\:Semi\:-\:perimeter\:=\:\dfrac{a\:+\:b\:+c}{2}}

\qquad\sf{:\implies\:Semi\:-\:perimeter\:=\:\dfrac{325\:+\:300\:+125}{2}}

\qquad\sf{:\implies\:Semi\:-\:perimeter\:=\:\dfrac{750}{2}}

\qquad\sf{:\implies\:Semi\:-\:perimeter\:=\:375\:m}

Hence the semi - perimeter is 375 m.

\qquad\qquad\underline{\qquad\:\qquad\qquad\qquad}

~Area of the triangular field

\qquad\sf{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\:\sqrt{s\:(\:s\:-\:a\:)\:(\:s\:-\:b\:)\:(\:s\:-\:c\:)\:} }

\qquad\sf{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\:\sqrt{375\:(\:375\:-\:325\:)\:(\:375\:-\:300\:)\:(\:375\:-\:125\:)\:} }

\qquad\sf{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\:\sqrt{375\:(\:50\:)\:(\:75\:)\:(\:250\:)\:} }

\qquad\sf{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\:\sqrt{375\:\times\:50\:\times\:75\:\times\:250\:} }

\qquad\sf{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\:\sqrt{35,15,62,500} }

\qquad\sf{:\implies\:Area\:_{(\:TRIANGLE\:)}\:=\:18750\:m^{2}}

Hence the area of the triangular field is 18750 m².

Similar questions