Math, asked by omjee06, 10 months ago

The area of traperium is 182 cm2.
Its height is 14cm . The larger parallel
side is longer than the other by
16cm . Find the length of the parallel
sides.​

Answers

Answered by rawatbhawan22
51

Answer:

given area of trapezium 182cm2

Step-by-step explanation:

let smaller parallel side=x

larger=x+16

ar=1/2(×+×+16)*14

182=(2×+16)×7

182=14×+112

14×=70

×=5

larger side is 16+5=21

Answered by StarrySoul
110

\textbf{\huge{\underline{Given:}}}

● Area of Trapezium = 182 cm^2

● Height = 14 cm

● One parallel side is longer than other by 16 cm

\textbf{\huge{\underline{To\:Find:}}}

Length of the parallel sides

\textbf{\huge{\underline{Solution:}}}

\star Let the one parallel side be a and other be a+16

We know that :

 \star  \sf\: Area \: of \: Trapezium =   \dfrac{1}{2} (Sum \:  of  \: parallel \:  sides) \times height

 \hookrightarrow \sf \: 182 {cm}^{2}  =  \dfrac{1}{2} (a + a + 16) \times 14 \: cm

 \hookrightarrow \sf \: 182 {cm}^{2}  =  \dfrac{1}{ \cancel2} (2a + 16) \times  \cancel14

 \hookrightarrow \sf \: 182 {cm}^{2}  =  7(2a + 16)

 \hookrightarrow \sf \: 182 {cm}^{2}  =  14a + 112

 \hookrightarrow \sf \: 14a = 182 - 112

 \hookrightarrow \sf \: 14a = 70

 \hookrightarrow \sf \: a =  \dfrac{70}{14}

 \hookrightarrow \sf \: a =  \large \boxed{ \sf \: 5 \: cm}

Now,

  \star \: \sf \: Measure \: of \: 1 \: parallel \: side = 5 \: cm

  \star \: \sf \: Other \: Parallel \:  Side \: = 5 + 16  \\  =  \sf \: 21 \: cm

\textbf{\huge{\underline{Verification:}}}

  \sf\: Area \: of \: Trapezium =   \dfrac{1}{2} (Sum \:  of  \: parallel \:  sides) \times height

 \hookrightarrow \sf \:  Area = \dfrac{1}{ \cancel2} (5 + 21) \times \cancel 14

 \sf \hookrightarrow \:Area =  7(5 + 21)

 \sf \hookrightarrow \:Area =  35 + 147

 \sf \hookrightarrow \:Area =   \large \boxed{ \sf \: 182  \: {cm}^{2} }

Hence,Verified!

Similar questions