Math, asked by roshansharmaroshansh, 6 months ago

the area of trapezium 352 cm^ the distance parallels is 16 cm if one parallel side is 251 cm find the other​

Answers

Answered by ImperialGladiator
3

Answer:

Another side is 207cm ☑

Step-by-step explanation:

 \sf :  \implies \: Area \: of \: trapezium \:  =  \frac{(a + b)}{2} \times h  \\  \sf :  \implies \:   {352cm}^{2}  =  \frac{(a + 251)}{2}  \times 16 \\  \sf :  \implies \: 352 = 8(a + 251) \\  \sf :  \implies \: 352 = 8a + 2008 \\  \sf :  \implies \: 8a = 2008 - 352 \\  \sf :  \implies \: 8a = 1656 \\  \sf :  \implies \: a =  \frac{1656}{8}  \\  \sf :  \implies \:a  = 207 cm \: ans.

Answered by Anonymous
2

\huge\boxed{\mathfrak{\red{\fcolorbox{red}{pink}{AnSwer:-}}}}

Another side is 207cm

\begin{gathered} \sf : \implies \: Area \: of \: trapezium \: = \frac{(a + b)}{2} \times h \\ \sf : \implies \: {352cm}^{2} = \frac{(a + 251)}{2} \times 16 \\ \sf : \implies \: 352 = 8(a + 251) \\ \sf : \implies \: 352 = 8a + 2008 \\ \sf : \implies \: 8a = 2008 - 352 \\ \sf : \implies \: 8a = 1656 \\ \sf : \implies \: a = \frac{1656}{8} \\ \sf : \implies \:a = 207 cm \: ans.\end{gathered}

HOPE THIS HELPS ❤️☺️

BE BRAINLY☃️

Similar questions