Math, asked by mikha, 1 year ago

The area of trapezium is 1586 cm² and sum of parallel sides is 122 can. Find the distance between two parallel sides.

Answers

Answered by ManviPrincess
3
let the height be x
area of trapezium = 1/2*parallel side*height
1586 =1/2*122*height
1586=61x
x=1586/61
x=26

mikha: how
ManviPrincess: The formula and answer is given
mikha: in which class u r
Answered by Battleangel
7

hello dear mikha

<body bgcolor="cyan"

<body bgcolor="cyan" \red{area \: of  \: trapezium \:  =  \frac{1}{2}  \times (a + b) \times h}

<body bgcolor="cyan" \red{area \: of  \: trapezium \:  =  \frac{1}{2}  \times (a + b) \times h} \blue{1586 {cm}^{2}  =  \frac{1}{2} \times122cm \times h }

<body bgcolor="cyan" \red{area \: of  \: trapezium \:  =  \frac{1}{2}  \times (a + b) \times h} \blue{1586 {cm}^{2}  =  \frac{1}{2} \times122cm \times h }  \purple{1586 {cm}^{2} =  \frac{122cm}{2}  \times h }

<body bgcolor="cyan" \red{area \: of  \: trapezium \:  =  \frac{1}{2}  \times (a + b) \times h} \blue{1586 {cm}^{2}  =  \frac{1}{2} \times122cm \times h }  \purple{1586 {cm}^{2} =  \frac{122cm}{2}  \times h } \pink{ \frac{1586{cm}^{2} \times 2}{122 \: cm} = h }

<body bgcolor="cyan" \red{area \: of  \: trapezium \:  =  \frac{1}{2}  \times (a + b) \times h} \blue{1586 {cm}^{2}  =  \frac{1}{2} \times122cm \times h }  \purple{1586 {cm}^{2} =  \frac{122cm}{2}  \times h } \pink{ \frac{1586{cm}^{2} \times 2}{122 \: cm} = h } \green {\dfrac{3172 \cancel{{cm}^{2}}}{122 \cancel {cm}}  = h}

<body bgcolor="cyan" \red{area \: of  \: trapezium \:  =  \frac{1}{2}  \times (a + b) \times h} \blue{1586 {cm}^{2}  =  \frac{1}{2} \times122cm \times h }  \purple{1586 {cm}^{2} =  \frac{122cm}{2}  \times h } \pink{ \frac{1586{cm}^{2} \times 2}{122 \: cm} = h } \green {\dfrac{3172 \cancel{{cm}^{2}}}{122 \cancel {cm}}  = h} \orange{ \cancel \frac{3172cm}{122} = h}

<body bgcolor="cyan" \red{area \: of  \: trapezium \:  =  \frac{1}{2}  \times (a + b) \times h} \blue{1586 {cm}^{2}  =  \frac{1}{2} \times122cm \times h }  \purple{1586 {cm}^{2} =  \frac{122cm}{2}  \times h } \pink{ \frac{1586{cm}^{2} \times 2}{122 \: cm} = h } \green {\dfrac{3172 \cancel{{cm}^{2}}}{122 \cancel {cm}}  = h} \orange{ \cancel \frac{3172cm}{122} = h}  \implies \: 26cm = h

<body bgcolor="cyan" \red{area \: of  \: trapezium \:  =  \frac{1}{2}  \times (a + b) \times h} \blue{1586 {cm}^{2}  =  \frac{1}{2} \times122cm \times h }  \purple{1586 {cm}^{2} =  \frac{122cm}{2}  \times h } \pink{ \frac{1586{cm}^{2} \times 2}{122 \: cm} = h } \green {\dfrac{3172 \cancel{{cm}^{2}}}{122 \cancel {cm}}  = h} \orange{ \cancel \frac{3172cm}{122} = h}  \implies \: 26cm = h hence \: the \: distance \: between \: the \: parallel  \\ sides = 26 \: cm \:

<body bgcolor="cyan" \red{area \: of  \: trapezium \:  =  \frac{1}{2}  \times (a + b) \times h} \blue{1586 {cm}^{2}  =  \frac{1}{2} \times122cm \times h }  \purple{1586 {cm}^{2} =  \frac{122cm}{2}  \times h } \pink{ \frac{1586{cm}^{2} \times 2}{122 \: cm} = h } \green {\dfrac{3172 \cancel{{cm}^{2}}}{122 \cancel {cm}}  = h} \orange{ \cancel \frac{3172cm}{122} = h}  \implies \: 26cm = h hence \: the \: distance \: between \: the \: parallel  \\ sides = 26 \: cm \: <marquee scrollamount=1200>hope this helps you xD ✌❤</marquee>

Similar questions