Math, asked by poonamjoshi24629, 3 months ago

the area of trapezium is 210 sq cm its parallel sides are ratio 1:2 and distance between them is 14 cm find the length of each parallel sides​

Answers

Answered by ImperialGladiator
9

Answer:

10cm & 20cm.

Explanation:

In a trapezium,

Ratio of parallel sides 1 : 2

Area is 210cm²

Distance between the parallel sides is 14cm.

We know that,

Area of a trapezium :

→ ½ • sum of parallel sides • distance between the parallel sides.

Let's say the parallel sides are x and 2x

According to the question :

→ 210 = ½ • (x + 2x) • 14

→ 210 = 3x • 7

→ 210 = 21x

→ 210/21 = x

→ 10 = x

Hence, the parallel sides measures :

x and 2x

Or, 10 and 2(10)

Or, 10cm and 20cm.

Required answer : 10cm & 20cm.

Answered by Anonymous
208

Answer:

 \LARGE\underline{\sf \pmb{Given}}

  • ➠ The area of trapezium is 210
  • ➠The trapezium parallel sides are ratio 1:2
  • ➠ Distance between them is 14 cm

\begin{gathered} \end{gathered}

  \LARGE \underline{\sf {\pmb{To \:  Find }}}

  • ➠ The length of each parallel sides

\begin{gathered} \end{gathered}

  \LARGE\underline {\sf {\pmb{Using\: Formula }}}

{\underline {\boxed {\bf{Area \:  of \:  Trapezium =  \dfrac{1}{2} ( Sum  \: of \:  Parallel  \: sides) \times Height}}}}

\begin{gathered} \end{gathered}

 \LARGE \underline {\sf \pmb{Understanding  \: The  \: Question }}

In this question the area of Trapezium is 210 cm² and its parallel sides are in ratio 1:2 and distance between them is 14 cm (we can also call it height of Trapezium).In this question we need to find the each parallel sides of Trapezium

\begin{gathered}\end{gathered}

  \LARGE{\underline{\sf \pmb{Solution}}}

Let the measurement parallel sides of Trapezium be "x" and "2x"

So,

 { \red\implies \bf  \green{Area \:  of \:  Trapezium =  \dfrac{1}{2} ( Sum  \: of \:  Parallel  \: sides) \times Height}}

  • Substituting the values

 { \implies \sf {200 \:  {cm}^{2} =  \dfrac{1}{2} ( x + 2x) \times14}}

 { \implies \sf {210 =  \dfrac{1}{\cancel{2} }\times 3x\times \cancel{14}}}

 { \implies \sf {210  =3x \times 7}}

 { \implies \sf {210 =21x}}

\implies \sf  \cancel\dfrac{210}{21} = x

\implies \bf  10 \: cm = x

Here

\underline{\large {\boxed{ \bf\red{x = 10 \: cm}}}}

\begin{gathered}  \end{gathered}

  \LARGE\underline {\sf \pmb{Therefore}}

Sides

  • ➥ 10 = 10 cm
  • ➥ 2 × 10 = 20 cm

\begin{gathered}\end{gathered}

 \LARGE\underline {\sf {\pmb{Verification}}}

 { \red\implies \bf  \green{Area \:  of \:  Trapezium =  \dfrac{1}{2} ( Sum  \: of \:  Parallel  \: sides) \times Height}}

  • Substituting the values

 { \implies \sf {200 \:  {cm}^{2} =  \dfrac{1}{2} ( 10 + 20) \: cm \times14 \: cm}}

 { \implies \sf {210 \:  {cm}^{2}  =  \dfrac{1}{\cancel{2} }\times 30 \: cm\times \cancel{14}}}  \: \sf cm

{ \implies \sf {210 \: {cm}^{2}  =30 \: cm \times 7 \: cm}}

{ \implies \bf {210 \: {cm}^{2}  = 210 \: {cm}^{2}  }}

Here

 \underline {\boxed {\bf {\red{LHS = RHS}}}}

  • Hence Verified

\begin{gathered} \end{gathered}

  \LARGE\underline {\sf \pmb{Additional \:  Information }}

\begin{gathered}\begin{gathered}\bigstar \: \bf\underline{More \: Useful \: Formulae } \: \bigstar  \\ \begin{gathered}{\boxed{\begin{array} {cccc}{\sf{\leadsto{Perimeter  \: of \:  Trapezium = (Sum \:  of \:  all  \: sides)}}} \\  \\ {\sf{{\leadsto TSA \: of \: cube \: = \: 6(side)^{2}}}} \\  \\{\sf{{\leadsto LSA \: of \: cube \:= \: 4(side)^{2}}}}  \\  \\{\sf{{\leadsto Volume \: of \: cube \: = \: (side)^{3}}}} \\  \\ {\sf{{\leadsto Diagonal \: of \: cube \: = \: \sqrt(l^{2} + b^{2} + h^{2}}}} \\  \\ {\sf{{\leadsto Perimeter \: of \: cube \: = \: 4(l+b+h)}}} \\   \\ {\sf{{\leadsto CSA \: of \: sphere \: = \: 2 \pi r^{2}}}} \\  \\ {\sf{{\leadsto SA \: of \: sphere \: = \: 4 \pi r^{2}}}} \\  \\{\sf{{\leadsto TSA \: of \: sphere \: = \: 3 \pi r^{2}}}} \\  \\ {\sf{{\leadsto Diameter \: of \: circle \: = \: 2r}}} \\  \\ {\sf{{\leadsto Radius \: of \: circle \: = \: \dfrac{d}{2}}}} \\  \\ {\sf{{\leadsto Volume \: of \: sphere \: = \: \dfrac{4}{3} \pi r^{3}}}} \\  \\ {\sf{{\leadsto Area \: of \: rectangle \: = \: Length \times Breadth}}} \\  \\ {\sf{{\leadsto Perimeter \: of \: rectangle \: = \:2(length+breadth)}}} \\  \\{\sf{{\leadsto Perimeter \: of \: square \: = \: 4 \times sides}}}\end{array}}}\end{gathered}\end{gathered}\end{gathered}

Similar questions