Math, asked by shreevaidya570, 4 months ago

the area of trapezium is 400cm² the distance between the parallel sides is 16 cm if one of the parallel side is 20 cm find the length of the other ?​

Answers

Answered by FIREBIRD
104

Answer:

The length of the other parallel side is 30 cm

Step-by-step explanation:

We Have :-

Area of Trapezium = 400 cm²

Distance between the parallel sides = 16 cm

One of the parallel side = 20 cm

To Find :-

Length of the other parallel side

Formula Used :-

Area \: of \: Trapezium \:  =  \:  \dfrac{1}{2}  \times ( \: sum \: of \: parallel \: sides \: )  \times height

Solution :-

400 =  \dfrac{1}{2}  \times (x + 20) \times 16 \\  \\  \dfrac{400 \times 2}{16}  = x + 20 \\  \\ 50 = x + 20 \\  \\ x = 50 - 20 \\  \\ x = 30

The length of the other parallel side is 30 cm

Answered by Anonymous
306

Answer:

  \large{\sf {\pmb{\underline{Given}}}}

  • ➥ The area of trapezium is 400cm²
  • ➥ The distance between the parallel sides is 16 cm
  • ➥ One of the parallel side of Trapezium is 20 cm.

\begin{gathered} \:  \: \end{gathered}

\large{ \sf {\pmb{\underline{To \:  Find }}}}

  • ➥ The length of the other parallel side of Trapezium

\begin{gathered} \:  \: \end{gathered}

 \large{ \sf{ \pmb{\underline{Using \: Formula}}} }

 \underline{\boxed  {\sf{Area  \: of \:  Trapezium =  \dfrac{1}{2} \times ( Sum \:  of  \: Parallel \:  side ) \times Height }}}

\begin{gathered} \:  \: \end{gathered}

 \large{\sf{ \pmb{\underline{Solution}}}}

  • ➠ Let the other side of Trapezium be "x" cm

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

According to the Question.

 { :\Rightarrow \: \sf \: Trapezium _{(Area)} =  \dfrac{1}{2}  \times (20 + x) \times 16 }

  : \Rightarrow \:  \sf {400 \:  {cm}^{2} } =  \dfrac{1}{2}  \times (20 + x) \times 16 \:

 :\Rightarrow \: \sf {400 } =  \cancel \dfrac{16}{2}  \times (20 + x)

:\Rightarrow \: \sf {400 } = 8 \times (20 + x)

 :\Rightarrow  \: \sf(20 + x)  =  \cancel \dfrac{400}{8}

 :\Rightarrow \: \sf(20 + x)   = 50

 :\Rightarrow \: \sf{x = 50 - 20}

 :\Rightarrow \: \sf{x = 30 \: m}

   \:  \: \large\underline {\boxed{\frak \purple{Base = 30 \: m}}}

\begin{gathered} \:  \: \end{gathered}

 \large{\sf{ \pmb{\underline{Verification }}}}

 { :\Rightarrow \: \sf \: Trapezium _{(Area)} =  \dfrac{1}{2}  \times (a+ b) \times h }

  • Substituting the values

{ :\Rightarrow \: \sf 400  \: {cm}^{2} =  \dfrac{1}{2}  \times (20 + 30) \times 16}

{ :\Rightarrow \: \sf 400  \: {cm}^{2} =   \cancel\dfrac{16}{2}  \times (50)}

{ :\Rightarrow \: \sf 400  \: {cm}^{2} =  (8  \: cm\times 50 \: cm)}

{ :\Rightarrow \: \sf 400  \: {cm}^{2} =400  \: {cm}^{2} }

  \:  \: \large\underline {\boxed{\mathcal\purple{LHS =RHS }}}

\begin{gathered} \:  \: \end{gathered}

\large{\sf{\pmb{\underline{Therefore}}}}

  • The length of the other parallel side of Trapezium is 30 cm.
Similar questions